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1 Introduction

Reading back on these notes, I don’t think I have done a good job presenting this beautiful idea of unification.
I think I have delved too much into details instead of exposing the simplicity behind the subject. I hope
I can remedy this in the lecture. But really the idea is very simple (without trivializing it of course). We
observe the Standard Model to be a gauge theory SU(3) × SU(2) × U(1). Why not try to embed it as a
subgroup in some larger gauge group and see what happens. This would of course mean that at some energy
scale the coupling constants all unite. But it implies many other things as well as we shall explore below.
There are many constraints, however, on the larger gauge group. Anomalies have to cancel for example. But
the moment you set your mind on trying to embed the Standard Model into a larger gauge group, it is just
a matter of trying different schemes and see if they work. The tools are all available, the Simple Lie groups
have all been classified and well-studied. And today experimentalists offer a lot of experimental constraints
(proton decay, flavor changing neutral currents) that we can use to cross out certain schemes or put lower
bounds on the unification scale. I will start this presentation by explaining why are we at all interested in
just Simple Lie groups. Then in section 3 I will go on to remind you of some results from group theory
that might come in handy. The Standard Model is briefly summarized in section 4 and SU(5) unification is
presented in section 5. I haven’t discussed SO(10) unification in this notes but I hope to do so in the lecture.

2 Gauge Theories

As we discussed in class, in order to construct a quantum field theory of unit spin which is manifestly
Lorentz invariance and preserve unitarity we need our theory to be gauge invariant. In order to achieve this
we construct our Lagrangian out of the matter fields, ψ(x), the covariant derivative of the fields Dµψ(x) and
the field strength tensor F a

µν ,
Dµψ(x) ≡ (∂µ − iAa

µt
a)ψ(x) (1)

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + Ca

bcA
b
µA

c
nu (2)

Where Aa
µ are my gauge fields (I will be suppressing the matrix indices on the generators ta, and the field

ψ(x)). Note that I have written the structure constant Ca
bc distinguishing between the superscript and the

two subscripts which are anti-symmetric (since [tb, tc] = iCa
bcta). As we will see below, for the Lie algebras

we are interested in, the structure constant can be chosen to be anti-symmetric in all three indices. Under
a general gauge transformation those creatures transform as,

δψ(x) = iεataψ(x) (3)

δ(Dµψ(x)) = iεata(Dµψ(x)) (4)

δ(F a
µν) = iεcCa

bcF
b
µν (5)
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Note that the field strength tensor transform as a matter field in the adjoint representation ((ta)bc = −iCa
bc).

Constructing a Lagrangian which is invariant under a global transformation out of these quantities, ensures
that it is also invariant under a local transformation. The only way we can write a kinetic term for the gauge
field is by using the F a

µν tensor. Lorentz invariance dictates the form,

LA = −1
2
gabF

a
µνF

bµν (6)

Where gab is a constant matrix. For parity non-conserving theories (which the Standard Model is a good
example of) we can also use the totaly anti-symmetric epsilon tensor to write,

L′A = −1
2
θabε

µναβF a
µνF

b
αβ (7)

θab is again a constant matrix. This can actually be written as a total derivative and therefore doesn’t
enter perturbation theory in any order. To see that the above term indeed violates parity just do a Lorentz
transformation on the Field Tensor with Λµ

ν = diag(1,−1,−1,−1) corresponding to a parity transformation
and note that the result is proportional to −εµναβ rather than εµναβ .
Now it turns out that gab is quite a special matrix. It can obviously be chosen symmetric (since F a

µνF
bµν is

symmetric with respect to a and b), and it has to be real so that our Lagrangian is real. Since we require
gauge invariance we must also have,

gabF
a
µνC

b
cdF

cµν = 0 (8)

for all choices of d. Since we don’t want to impose any constraints on our Field Tensor, we must require the
matrix gab to satisfy,

gabC
b
cd = −gcbC

b
ad (9)

Canonical quantization and positivity of the scalar product require that gab be a positive definite matrix. So
gab is a symmetric, real, positive definite matrix, which satisfy the condition (9) above. This is very impor-
tant since it severely restricts the type of Lie algebras we need to consider in constructing gauge theories.
As Weinberg proves in the Appendix for chapter 15 of his book, reference [4], the following three statements
are equivalent,
(a) There exists a symmetric, real, positive definite matrix over the space of group indices, which satisfy the
condition (9).

(b) We can always choose an appropriate basis t′a for our generators (remember, the generators of Lie
group form a real linear space of generators), such that the structure constants Ca

bc is anti-symmetric in all
three indices. Therefore there is no point of me writing a as a superscript and from now on I’ll just write
Cabc when referring to the structure constant of the Lie algebras involved.

(c) (This is the thing to remember) The Lie algebra must be a direct sum of commuting compact simple
and U(1) subalgebras. Put in the language of groups rather than algebras, our Lie group G must be a direct
product of compact simple and U(1) subgroups.

I’ll remind you below what is a simple Lie algebra when discussing group theory. This is very impor-
tant. It highly restricts the types of Lie groups we have to consider as candidates for our gauge theories.
Moreover, the nice thing (or the sad thing, depending how you look at it) is that all the relevant work has
been done in the beginning of the 20th century by Eli Cartan and Sophius Lie (and others). They have
completely classified all the possible simple Lie groups. There are definite algorithms for computing all their
irreducible representations, subgroups, generators and other goodies. I’ll present this results later on.
Weinberg also shows that we can now simply choose gab = δab. If you wonder where did the coupling con-
stants go, they are hidden in the definition of the gauge field Aa

µ and I will display them explicitly later on.
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When discussing modifications of the fermion or gauge structure of the Standard Model it is important that
we don’t introduce anomalies (the Standard Model is anomaly-free). As Jesse explained to us last week
very clearly anomalies arise when considering contributions to the vertex of three currents as shown in the
diagram below. Those diagrams are linearly divergent. If the currents are associated with global symmetries
of the theories, this is not very harmful. However, when those currents are associated with the gauge fields
of the theory this is bad news. Those diagrams will contribute to the vertex renormalization for the gauge
coupling constant. The linear divergence mean that we will not be able to regulate this vertex in a way
compatible with the gauge symmetry of our theory. The anomaly coefficient is given by,

Aabc ' 2Tr(T a
LT

b
L, T

c
L)− 2Tr(T a

RT
b
R, T

c
R) = 2(Aabc

L −Aabc
R ) (10)

Where T a
L,R are the representation generators corresponding to the left (right) handed fermions. Therefore,

in vector-like theory (non-chiral) anomalies are automatically cancelled. It turns out that of all the classical
groups (described below), only the SU(N)’s and SO(6) have anomalies that one should worry about.

�
3 Some results from Group theory

I would like to remind you of some results on group theory (I give a few references at the end where you can
find the theory developed in a more or less systematic way). We will concentrate on Lie groups, groups of
transformations which depend on a set of continuous variables θa. Those elements of the group which lay
in the connected part of the group can be written as exponentials of a set of operators U(~θ) = exp(−itaθa),
which are called the generators of Lie group. The groups multiplication law forces the generators to obey
certain commutation relations which are referred to as the Lie algebra associated with the Lie group,

[tb, tc] = iCa
bcta (11)

Where the Ca
bc are the structure constants of the Lie algebra. A representation for the Lie group can

be generated by finding a representation for the Lie algebra, i.e. a set of operators satisfying the above
commutation relation. A very important representation is the adjoint representation. It is formed by
taking,

(T a)bc = −iCa
bc (12)

Notice the difference between a representation of the generators (the above T a’s are a representation) and
the generators themselves (the ta’s, they are of course in a sense also a representation called the defining
representation of the algebra). We will say that an operator (a field usually) transform according to the D
representation of the Lie group if,

O → O′ = U(θa)OU†(θa) = exp(−i(T (D))aθa)O (13)

Let’s now specialize to simple Lie algebras. We need a few definitions. We will say that a Lie algebra has
an invariant subalgebra if we can find a set of generators H = Ha such that the commutator of any member
of the set with any member of the entire algebra is inside the set H. In symbols [ta,Hb] ∈ H. A simple
Lie algebra is one that has no invariant subalgebras. A semi-simple Lie algebra is one that has no
Abelian invariant subalgebras (an Abelian algebra is one in which all the generators commute, or put it
differently, one in which all the structure constants are zero). A compact simple or semi-simple Lie algebra
is one for which Tr(t(Adj)

a t
(Adj)
b ) = −Cc

adC
d
bc is positive-definite.

The Cartan subalgebra of a group is the maximal set of generators that can be simultaneously diagonalized
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(i.e. they all commute with each other). I will denote them by Ha, with the index a = 1..m. m is called the
rank of the Lie algebra. So we have,

[Ha,Hb] = 0 (14)

for all a, b = 1..m. The rank of the group tells us how many good quantum numbers we have for our state
in the theory which will describe particles. That is, the different charges for our particles (electric charge,
weak charge etc.).
As I mentioned before, people have classified the simple Lie groups completely long ago. The method of
highest weight can be used to find all the finite dimensional representation of the compact simple Lie groups
for example. There are four countable sequences of Lie algebras, Al, Bl, Cl and Dl where l is the rank.
Those correspond to the classical groups of geometrical rotations. Al corresponds to SU(l+ 1) the group of
transformation, over a complex l+ 1 dimensional linear space, which leave the inner product u∗i vi invariant.
Bl and Dl correspond to SO(2l + 1) and SO(2l) respectively. SO(n) is of course the group of rotations
over a real n dimensional linear space that leave the inner product viui invariant. The last classical group
Cl correspond to the group of symplectic matrices Sp(2l). Those are real 2l × 2l matrices, which leave the
quadratic form uiSijvj invariant, where Sij is the skew-symmetric matrix,

S =


0 1

−1 0

0 1

−1 0

. . . . . .

 (15)

Beside of the classical groups there are also five exceptional groups. Those are labelled G2, F4, E6, E7 and
E8 (where again, the subscript denotes the rank of the group). I have summarized in the table below all of
the simple groups.

Cartan Label Classical Group Order(N) Range of l
Al SU(l + 1) l(l + 2) l ≥ 1
Bl SO(2l + 1) l(2l + 1) l ≥ 2
Cl Sp(2l) l(2l + 1) l ≥ 3
Dl SO(2l) l(2l − 1) l ≥ 4
G2 G2 14
F4 F4 52
E6 E6 78
E7 E7 133
E8 E8 248

Note that if Ta is a representation of the generators than so is −(Ta)∗. This follows since,

[Ta, Tb] = iCabcTc ⇒ [(−Ta)∗, (−Tb)∗] = −iCabc(Tc)∗ = iCabc(−Tc)∗ (16)

−T ∗a is called the complex conjugate representation. However, it doesn’t mean that we found a new rep-
resentation. It might be that the complex conjugate representation −T ∗a is unitarily equivalent to the
representation Ta, in which case it is not a new representation at all. If we can find a unitary matrix U such
that

(−Ta)∗ = U(Ta)U†, a = 1..N (17)
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(note that U must be the same unitary matrix for all the generators) then the representation is called
real, or when applied to fermions it is called vector-like (since we cannot rotate the right and left handed
components of the field differently). If we cannot find such a unitary matrix, then the representation is said
to be complex. If the left handed fermions belong to such a representation then the right handed ones will
belong to the complex conjugate representation and since it is different the theory is said to be chiral (i.e.
we can rotate the right and left components differently).

4 Standard Model

The minimal non-supersymmetric (I will not include supersymmetry in my talk at all, but it might be inter-
esting to discuss GUTs in the context of SUSY at some point, maybe later in the summer) Standard Model
of particle physics is an SU(3)× SU(2)× U(1) gauge theory with the following matter content,

Particle SU(3) SU(2) U(1)
q 3 2 1

6
uc 3̄ - − 2

3
dc 3̄ - 1

3
l - 2 − 1

2
ec - - 1

νc ??? - - -
H - 2 1

2

This table repeats itself three times for the three families. I have suppressed the color index on q = (u, d)T

and their anti-particles uc and dc (i.e. those particles appear in three colors Red, Blue, Green). I have used
left-handed particles and left handed anti-particles (ψL and ψc

L) to present the matter content. I could just
as well have chosen left-handed particles and right-handed particles (since ψR = C ¯(ψc

R)T , where C is the
charge conjugation operator in your favorite Dirac matrices representation). The left-handed leptons are
l = (ν, e)T . I have added to the list a right-handed neutrino νc. This is usually left out of the Standard
Model, but since we do observe a neutrino mass we can postulate a right-handed neutrino which will allow
for a Dirac mass term for the neutrino (that’s not the only way to give it a mass, but a very simple way).
Finally, we have the Higgs sector, where H = (h+, h0)T (the superscripts indicate the electric charge). In the
usual description of spontaneous symmetry breakdown (SSB), the Higgs potential is arranged so that the
vacuum state of the field, transforms in a non-trivial way under SU(2). The vacuum state is conventionally
chosen such that

〈H〉 = (0, v)T (18)

This breaks the electroweak force to the familiar electromagnetic and weak forces SU(2)×U(1) → U(1)EM .
With this choice of vacuum (equation (18)) there are three broken generators, which will correspond to
three Goldstone bosons. Those will be ”eaten” by the gauge fields corresponding to the broken generators
to give them mass. One generator is unbroken and therefore the associated gauge field will remain massless
(the photon). The physical Higgs field will have a mass of the order of the SSB scale v (I’m not providing
many details since those can be found in any treatment of the subject and reference [1] does an excellent job
presenting all of this).
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5 SU(5) Unification

SU(N) is defined as the group of special (determinant is unity) unitary N × N matrices. The defining
representation can be written as,

U(~θ) = exp(−i
∑

a

θaT a) (19)

We haveN2−1 generators which can be chosen to be hermitian and traceless. The conventional normalization
for the generators is Tr(T aT b) = 1

2δab. We will chose the following basis for our representation,

(T a
b )cd ≡ (T a

b )c
d ≡ δc

bδ
a
d −

1
N
δa
b δ

c
d a, b, c, d = 1...N (20)

We wrote the row index as a superscript because it will allow us to distinguish between fields transforming
according to the representation and those transforming according to the complex conjugate representation.
The commutation relations of the generators can be easily worked out to be,

[T a
b , T

a′

b′ ] = δa
b′T

a′

b − δ
′a
b T

a
b′ (21)

For a general representation of the Lie algebra just replace all the T a
b ’s with tab ’s and demand the same

commutations relations of course (there is no content in the this sentence, just formality). Now, we will say
that a set of fields ψc with c = 1...N , transform under the fundamental N dimensional representation if,

[tab , ψ
c] = −(T a

b )c
dψ

d (22)

The hermitian conjugate χc = (ψc)† will transform under the complex conjugate representation N̄ of the
fundamental representation.

[tab , χc] = −(T a
b (N̄))d

cχd (23)

where, recall that T a
b (N̄) = −(T a

b )T = −T b
a . In general, all the irreducible representations of the Lie

algebra can be obtained by symmetrizing and anti-symmetrizing direct products of fields in the N and N̄
representations. In particular the N2−1 adjoint representation fields ϕa

b (recall, in the adjoint representation
we take our generators to be the structure constants, see equation (12)) transform as,

[tab , ϕ
c
d] = −(T a

b )c
c′ϕ

c′

d − (T a
b (N̄))d′

d ϕ
c
d′ = −δc

bϕ
a
d + δa

dϕ
c
b (24)

Ok, let’d cut the formalism and describe the Georgi-Glashow SU(5) model. So as the name implies, we
assume that our theory is an SU(5) gauge theory. The Standard Model SU(3)×SU(2)×U(1) is embedded
as a subgroup in the following manner. The SU(3) subgroup generators are,

T β
α −

1
3
δβ
αT

γ
γ α, β, γ = 1, 2, 3 (25)

(There are 8 independent ones, as should be). The SU(2) subgroup generators are,

T r
s −

1
2
δr
sT

t
t r, s, t = 4, 5 (26)

(I will use (α, β, γ), (r, s, t) and (a, b, c) to denote SU(3), SU(2) and SU(5) indices, respectively. The U(1)
hypercharge generators is,

Y = −1
3
Tα

α +
1
2
T r

r (27)

Let’s count them. 8 SU(3) generators, 3 SU(2) generators and 1 hypercharge to a total of 12 generators. So
we have an additional 12 generators Tα

r and T r
α (since SU(5) has 52 − 1 = 24 generators). Those generators
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relate flavor to color and will therefore naturally lead to proton decay. However, we will of course devise
some mechanism (e.g. Higgs) of breaking this symmetry (since we don’t observe it in our energy scales), and
those additional 12 generators will ”eat” the 12 Goldstone bosons and become heavy. Very heavy. As heavy
as our SSB scale, which as we shall see (or have seen already on our problem sets) is roughly 1016GeV . In
our energy scales we can describe such a process the same way people described 4-fermion interactions in the
Fermi theory of the weak force. Our interaction will be a non-renormalizable one, and suppressed by mass
squared in the denominator. What mass? The mass of the heavy gauge mediators of course (in complete
analogy with the Fermi theory and the heavy W±, Z particles). Even though very small, it is detectable
nonetheless, and constrains the unification energy.
The 24 generators are in the adjoint representation as always in gauge theories, and on restriction to the
subgroup SU(3)× SU(2)× U(1) they transform as,

24 = (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2̄,−5
6
) + (3̄, 2,+

5
6
)

Gα
β W±,W 0 B Aα

r Ar
α

Where I have used (n1, n2, n3) to indicate how those fields transform under SU(3), SU(2) and U(1),
respectively (e.g. (8,1,0) are the gluons which transform under the adjoint of SU(3) but otherwise as
singlets). Now for the fermions of the theory. I will specify how the left-handed particles transform. Each
family of fermions (q,u,d,l,e, 15 in total) is put together in a 10 + 5̄ (reducible) representation of SU(5).
Let’s see how the field 5̄ transform under restriction to the SU(3)× SU(2)× U(1) subgroup,

5̄ = (3̄, 1,
1
3
) + (1, 2̄,−1

2
) (28)

(it is not so hard to verify this, and one way to do so is by the orthogonality relations for the group’s
characters). This looks familiar! (3̄, 1, 1

3 ) is how the dc quark transforms and (1, 2̄,− 1
2 ) is how the l doublet

transform. nice. How does the 10 (which is an antisymmetric product of two 5’s) reduce?

10 = (3̄, 1,−2
3
) + (3, 2,

1
6
) + (1, 1, 1) (29)

mmmm... very familiar, uc, q doublet and ec fields. How nice. So we can identify,

5̄ : ψLa =


dc
1

dc
2

dc
3

e−

−νe


L

(30)

10 : ψab
L =

1√
2


0 uc

3 −uc
2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u3 u3 0 −e+

d1 d2 d3 e+ 0

 (31)

The corresponding kinetic term in the Lagrangian is given by,

Lf = iψ̄Laσ
µ(DµψL)a + iψ̄L

ab
σµ(DµψL)ab (32)

= ψ̄Laσ
µ

(
i∂µδ

a
b +

g5√
2
(Aµ)a

b

)
ψa

L + ψ̄L
ac
σµ

(
i∂µδ

a
b +

2g5√
2

(Aµ)a
b

)
ψL)bc (33)

We can write it now in terms of the SU(3) × SU(2) × U(1) fields, but this is a real mess. The important
thing is the fact that what we used to call different gauge couplings (g,g′ and gs) are now all related to
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the SU(5) gauge coupling g5 (note however that g′ =
√

3
5g5). Expanding the expression also shows us that

we will have Baryon and lepton non-conserving terms. Let’s write one for example (you can find the whole
expression on page 263 of reference [1]),

g5√
2
(Aα

4 )µ(d̄Lασ
µe+L) (34)

Assuming that SU(5) breaks down at some very high energy MGUT , much higher than the mass of the
proton, we will have to integrate out the heavy gauge fields which correspond to the broken generators. This
will lead to (through terms as the above) a 4-fermion interaction such as shown below,

�

It is easy to estimate the life-time of the proton. Since the mediator has mass of say MGUT the ampli-
tude will have this mass squared in the denominator. We also get a factor of α5 = g5/4π in the numerator.
The life-time is the inverse of the square of the amplitude, so in order to have the units work out we need
the proton mass mp, to get,

τp ∼
1
α2

5

M4
GUT

m5
p

(35)

This implies MGUT ∼ 1016GeV .

It is not at all obvious that this model is anomaly free. But it is. People have classified all the anomaly free
groups and it turns out (this is story telling, I’m not proving anything) that of all the simple Lie groups only
the SU(N)’s for N > 2 have anomalies. In particular SO(10) is anomaly free. This is important because
the reducible 10 + 5̄ representation we have chosen for our fermion content can be embedded in a 16 spinor
representation of SO(10). Since SO(10) is anomaly free this specific SU(5) model is anomaly free.
There are many other things to discuss concerning this model, like SSB mechanism, mass generation for
the fermions and mixing matrices (generalized KMS matrices), charge quantization (now that the leptons
and quarks lay in the same representation, it is clear why the charge of the electron and proton are exactly
opposite) and baryon anti-baryon asymmetry. But I will not include those issues in these notes. Let me just
summarize some key points (there are many more aspects, but...) and I’ll try to give a better summary in
the lecture,

1. SU(5) incorporates SU(3)× SU(2)× U(1) as a maximal subgroup.

2. Electric charge is quantized. Since the electric charge is now an SU(5) operator we know that its
trace must be in every representation and therefore the charges of the different fields sitting in a
representation must be related. In particular, take the 5̄ representation from which we see that 3Qdc +
Qe− = 0.

3. It’s anomaly free.
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