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1 Motivation

We are very familiar with moose diagrams as a convenient model building tool, but at first glance,
they seem to be used in two very different contexts. First, moose diagrams can summarize certain
symmetry breaking patterns, such as chiral symmetry breaking in QCD [1]. Second, moose diagrams
can be used deconstruct an extra dimension [2]. In the case of deconstruction, any non-gravitational
fifth dimension can be approximated by a linear moose with an arbitrary number of sites, and if
we ignore back-reaction, the effect of warped geometry [3] can be mimicked by the choice of decay
constants for the various link fields. However, the application of mooses to symmetry breaking
patterns appears to be less universal. Indeed, there is no obvious way to construct a moose to
describe a generic G/H non-linear sigma model.

In this note, we will show how to understand any G/H symmetry breaking pattern in terms
of a very simple two-site moose. Our inspiration is the AdS/CFT correspondence and its phe-
nomenological interpretation [4]. In order to realize the desired G/H non-linear sigma model, we
imagine a 4D quasi-CFT with a global G symmetry that is spontaneously broken to H by QCD-like
confinement. The Goldstones of G/H arise analogously to the pions of QCD. The AdS dual of this
picture is a slice of AdS5 space with a bulk G gauge symmetry that is reduced to H on the IR
brane and completely broken on the UV brane.

Now, we can imagine deconstructing the fifth dimension of this AdS model. The link fields in
the moose are precisely the Wilson lines constructed out of A5.

Global : GUV G1 GN−1 GIR

ONMLHIJK // ONMLHIJK // · · · // ONMLHIJK // ONMLHIJK
Gauged : G1 GN−1 HIR

(1)

Going the extreme where we only introduce sites corresponding the UV and IR branes, we arrive
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at a moose diagram that will be the starting point for our analysis:

Global : GUV GIR

ONMLHIJK // ONMLHIJK
Gauged : HIR

(2)

At low energies, this is supposed to describe a G/H non-linear sigma model involving only global
symmetries, but in this AdS/CFT inspired moose, the subgroup H has become a gauge symmetry!

To understand why this is plausible, note that the counting of the degrees of freedom works
out properly. The link field contains a Gs worth of Goldstones, and an Hs worth are eaten by the
HIR gauge group. If we integrate out the heavy gauge fields, we are left with a G/Hs worth of
Goldstones, as expected. Of course, we have to contend with the effect of these heavy gauge fields,
but we will see that they play a rather benign role. In the low energy theory, we can simply do
naive dimension analysis with a cutoff Λ = gf , where g is the gauge coupling of HIR and f is the
Goldstone decay constant for the link field. In the limit of strong coupling g → 4π, we produce a
G/H non-linear sigma model with standard NDA rules.

As we will see, the moose in equation (2) has a beautiful translation into the original G/H
language of CCWZ [5, 6]. The link field in the moose diagram is the field that non-linearly realizes
the G symmetry. Also, some aspects of CCWZ which might seem obscure or formal in the CCWZ
language become necessary consequences of the HIR gauge symmetry. Of course, the low energy
phenomenology of the moose in equation (2) is identical to CCWZ G/H phenomenology. In the
limit g → 4π, it is not even meaningful to talk about the heavy gauge bosons because their
longitudinal modes are so strongly coupled that the theory needs a UV completion anyway. In
other words, the G/H moose is not a UV completion of a G/H non-linear sigma model but rather
an alternate description of it.

Then again, the G/H moose could inspire different kinds of UV completions. In particular,
the G/H moose offers a new way to realize the SU(5)/SO(5) Littlest Higgs [7]. In the original
conception of the Littlest Higgs, the imagined UV completion was an SO(N) confining theory with
5 Weyl fermions Ψi transforming in the fundamental of SO(N). The SU(5) global symmetry of
the fermions would then be broken to SO(5) by a 〈ΨiΨj〉 condensate. But the CCWZ moose for
SU(5)/SO(5) suggests a different kind of UV completion:

Global : SU(5)L SU(5)R

ONMLHIJK // ONMLHIJK
Gauged : SO(5)R

(3)

This moose practically screams out to be interpreted as an SU(Nc) confining theory with Nf = 5
that exhibits chiral symmetry breaking. The pions of this model fill out an SU(5), but an SO(5)s
worth are eaten by the SO(5)R subgroup of SU(5)R, leaving the desired SU(5)/SO(5) non-linear
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sigma model. This moose is identical in spirit to technicolor with hypercharge turned off.

Global : SU(2)L SU(2)R

ONMLHIJK // ONMLHIJK
Gauged : SU(2)weak

(4)

In the case of technicolor, SU(2)weak eats all of the SU(2) pions, but there is no conceptual problem
imagining a technicolor model with more quark flavors. Indeed, the phenomenologically dangerous
light Goldstones in Nf > 2 technicolor become the desired light Goldstones in the SU(5)/SO(5)
moose.

2 Review of CCWZ

Before analyzing the G/H moose, we review the basics of the CCWZ formalism. The CCWZ
prescription is a generic way to parametrize the Goldstone bosons πa arising from a G/H symmetry
breaking pattern. If T a are the generators ofH, andXa are the generators ofG/H, we can introduce
a field

ξ = eiπ
aXa/f (5)

that transforms as
ξ → gξU †, (6)

where g is an element of G, and U ∈ H is a function of the πa and furnishes a non-linear repre-
sentation of G. For general G and H, however, the Goldstone kinetic terms are not particularly
simple. We can decompose

ξ†∂µξ ≡ vaµT
a + paµX

a, (7)

and the objects vµ = vaµT
a and pµ = paµX

a transform as

vµ → U(vµ + ∂µ)U †, (8)
pµ → UpµU

†. (9)

The field vµ transforms like a connection, and we can use pµ to write down a Goldstone kinetic
term

Lkinetic = f2 tr pµp†µ, (10)

but the form of pµ depends heavily on the specific groups G and H.

However, if the Lie algebra G/H is a so-called symmetric space, we can simplify the Goldstone
kinetic terms. The Lie algebra of a symmetric space satisfies the schematic commutation relations

[T, T ] ∼ T, [T,X] ∼ X, [X,X] ∼ T. (11)

Therefore, a symmetric space has an automorphism

T a → T a, Xa → −Xa. (12)
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By applying this automorphism to equation (7), we find that the object pµ is simply given by

pµ =
1
2

(
ξ†∂µξ − ξ∂µξ

†
)
, (13)

and we can rewrite the Goldstone kinetic term in equation (10) as

Lkinetic =
f2

4
tr |∂µΣ|2. (14)

We have defined
Σ = ξξ̃† = ξ2 = e2iπ

aXa/f , (15)

and ξ̃ is the image of ξ under the automorphism. Looking at equation (6), we see that Σ = ξξ̃†

transforms as
Σ → gΣg̃†, (16)

where g̃ is the image of g under the automorphism. Therefore, in symmetric spaces we can construct
a the Goldstone matrix Σ that is an element of G/H but it transforms linearly under G.

The classic example of a theory with a Xa → −Xa automorphism is chiral symmetry breaking
in QCD:

SU(Nf )L × SU(Nf )R/SU(Nf )D. (17)

The automorphism simply exchanges the left and right groups. In that case, the associated Σ field
has transformation properties

Σ → gLgRΣ(gRgL)†, (18)

where gi ∈ SU(Nf )i. (Note that gL and gR commute.) If we consider the transformation under
SU(Nf )L alone, we find that (recall that g̃L = gR)

Σ → gLΣg†R. (19)

Therefore, we can describe chiral symmetry breaking in terms of the following moose diagram:

SU(Nf )L SU(Nf )R

ONMLHIJK // ONMLHIJK
(20)

For other symmetric spaces, however, there is no obvious moose description. An example is
the SU(5)/SO(5) Littlest Higgs theory that can be described in terms of a Σ field that transforms
as

Σ → V ΣV T , (21)

where V ∈ SU(5). (In this case, the automorphism is related to complex conjugation.) Because
there is no moose diagram for the Littlest Higgs, it is hard to see how the Littlest Higgs could
arise from chiral symmetry breaking in a QCD-like SU(Nc) theory. However, as we have already
argued, the moose in equation (3) describes a SU(5)/SO(5) non-linear sigma model at low energies,
suggesting that the Littlest Higgs could come from chiral symmetry breakings in a QCD-like theory
with Nf = 5.
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3 Understanding the G/H Moose

We now return to the proposed moose in equation (2) that is supposed to yield a G/H non-linear
sigma model at low energies:

Global : GUV GIR

ONMLHIJK // ONMLHIJK
Gauged : HIR

With malice of forethought, we will call the link field between the UV and IR sites ξ. Under
GUV ×GIR, the link field transforms as

ξ → gUV ξg
†
IR. (22)

Because the subgroup HIR of GIR has been gauged, though, the surviving global symmetry on the
IR site is just HIR (assuming that there is no subgroup of G/H that commutes with H). Therefore,
under the surviving global symmetry

ξ → gUV ξh
†
IR, (23)

which is precisely the transformation law in equation (6)! Apparently, hIR furnishes a non-linear
representation of GUV . Note that after HIR eats the relevant Goldstones, ξ is just an element of
G/H, so in a symmetric space, we can construct the non-linear sigma field

Σ = ξ2 → gUV Σg̃†UV . (24)

What about the heavy gauge bosons? One might worry that they could mix with ξ, and the
resulting low energy theory wouldn’t just be a G/H non-linear sigma model. However, we will see
that they mix in precisely the right way to realize the mapping between the moose in equation (2)
and the CCWZ Goldstone kinetic equation (10). In fact, the heavy gauge bosons will be mapped to
the connection field vµ in equation (8), such that fields charged only under HIR can be consistently
coupled to fields charged under GUV .

After going to a unitary gauge where the gauge bosons in HIR eat the relevant Goldstones, we
are left with a link field ξ = eiπ

aXa/f with the following leading order Lagrangian

Lkinetic = f2 tr |Dµξ|2, Dµξ = ∂µξ − igξAµ, (25)

where Aµ = AaµT
a. Expanding this Lagrangian

Lkinetic = f2 tr |∂µξ|2 +
g2f2

2
AaµA

µa + 2igf2Aaµ tr
(
T aξ†∂µξ

)
. (26)

We recognize the combination ξ†∂µξ from equation (7), and we find that the equation of motion
for Aaµ sets

igAµ = vµ, (27)

where we have used the orthogonality relation trT aT b = δab/2. Therefore, we see that the heavy
gauge fields play the same role as the connection vµ in the CCWZ formalism.
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What about the ξ kinetic terms? Integrating out the Aaµ fields from equation (26) to leading
order in derivatives:

Lkinetic = f2 tr |ξ†∂µξ|2 + 2f2
∑
a

(
trT aξ†∂µξ

)2
. (28)

Expressed in terms of pµ and vµ (note that v†µ = −vµ):

Lkinetic = f2(tr pµp†µ + tr vµv†µ) +
f2

2

∑
a

vaµv
µa = f2 tr pµp†µ, (29)

which is precisely equation (10)! So the moose in equation (2) does indeed yield the the entire
CCWZ formalism for a G/H symmetry breaking pattern. If we want to introduce fields with well
defined transformation laws under H, we simply attach them to the IR site and the Aµ gauge fields
will dutifully play the role of the vµ connection. If we want to gauge a subgroup of G, we simply
gauge that subgroup on the UV site, precisely what we expect from the AdS/CFT correspondence.

What about higher derivative interactions induced by integrating out Aµ? For example, the
next-to-leading operator coming from equation (26) is

LNLO ∼ f2

2Λ2
tr (VµνV µν) , (30)

where Λ = gf is the mass of the heavy gauge field, and

Vµν = ∂µvν − ∂νvµ + [vµ, vν ]. (31)

We know that vµ must appear in LNLO in the combination Vµν because vµ transforms like a
connection (see equation (8), but replace U with an HIR gauge transformation). To get a better
feel for Vµν , we can go to a symmetric space where

vµ =
1
2

(
ξ†∂µξ + ξ∂µξ

†
)
. (32)

It is straight forward to show that

Vµν = pµp
†
ν − pνp

†
µ = ξ

(
∂µΣ̂∂νΣ̂† − ∂νΣ̂∂µΣ̂†

)
ξ†, (33)

where Σ̂ = ξ2/2 is normalized to give the right NDA counting. This leads to

LNLO ∼ 1
g2

tr
(
∂µΣ̂∂νΣ̂†

)2
− 1
g2

tr
(
∂µΣ̂∂µΣ̂†

)2
. (34)

The coefficients 1/g2 are precisely the NDA estimate for these operators with g replacing 4π.

If we had fermions ψ that transformed underHIR, they would appear in the original Lagrangian
as

Lfermions =
∑
ψ

ψ̄σ̄µDµψ, Dµ = ∂µ + igAaµT
a
ψ , (35)

where T aψ are the generators of HIR in the ψ representation. When we integrate out Aµ, to leading
order we can simply set igAaµ = vaµ, but to next-to-leading order, we generate a four fermion
operator

Lfour fermion =
g2

Λ2
JaµJ

µa, Jaµ =
∑
ψ

ψ̄σ̄µT aψψ. (36)

The coefficient of this operator g2/Λ2 = 1/f2 is indeed consistent with NDA.
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4 Summary

We have seen that any G/H symmetry breaking pattern can be realized by a simple two-site moose:

Global : GUV GIR

ONMLHIJK // ONMLHIJK
Gauged : HIR

This construction was motivated by the AdS/CFT correspondence, but it should be emphasized
that this moose could arise from a theory that looks nothing like a quasi-conformal field theory.
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