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1 Motivation

This summer we want to understand extra dimensions, and one interesting model of extra dimensions is
deconstruction. In deconstruction, one or more extra dimensions appear at low energy, whereas at high
energy the model reveals itself as an asymptotically free gauge theory in four dimensions. When we think
of compact dimensions or brane-world scenarios, we often think of extra dimensions as appearing only
when we go to high energy. In deconstruction, the extra dimension appear as part of the confinement of a
series of linked SU(N) gauge groups. Thus, to understand deconstruction, we need to understand how to
create these linked QCD-like theories.

The tool we will use is the moose diagram. Moose diagrams have been used in various contexts, but
Georgi [1] was motivated to use them by a search for models that yield massless composite fermions. For
example, we know that the proton is a composite fermion formed out of three quarks, but the proton is
certainly not massless, with its mass given roughly by the confinement scale. Georgi wanted to find a
confinement mechanism that yielded composite fermions whose quantum numbers forbid a mass term in
the low energy effective theory.

But just drawing a random moose diagram is not enough. We need to make sure that our moose
is anomaly-free in order to claim that our moose is a valid quantum theory. We will see that this will
necessitate choosing the matter content of our theory carefully to guarantee that all anomalies cancel.
Because most of us aren’t all that comfortable with anomalies yet, I will spend a significant amount of
time showing a quick and dirty way to understand where a chiral anomaly could come from. (Contrast
this with the approach in [2].)

Then, once we are certain that we have an anomaly-free moose, we will be able to see quite clearly how
confinement works in these models. In the particular case of deconstruction [3], above the confinement
scale we will have a standard gauge theory of Weyl fermions that’s asymptotically free (because it’s a
non-Abelian gauge theory with sufficiently low matter content) and anomaly-free (because we chose it to
be that way). Below the confinement scale, we will have a theory of gauge sites and link fields that for most
intents and purposes looks like a five dimensional gauge theory with a latticized compact fifth dimension.
In this way, we will see the link between moose model building and extra dimensions.
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2 Moose Diagrams

A moose diagram is simply an array of sites with links. The sites represent gauge or global symmetry
groups, and the links represent Weyl fermion fields. As we know, once we specify the gauge groups and the
matter content, we can easily write down the Lagrangian that corresponds to that model. For example,
the moose

SU(M) //
ψ1

SU(N) //
ψ2 SU(M) (1)

represents M fields ψ1 with a global SU(M) symmetry transforming under the fundamental represen-
tation of SU(N), and M fields ψ2 with a separate global SU(M) symmetry transforming under the
anti-fundamental representation of SU(N). This yields the Lagrangian

L = − 1
2g2

tr(FµνFµν) +
M∑
i=1

ψ1iiσµD
N
µ ψ1i +

M∑
j=1

ψ2jiσµD
N
µ ψ2j (2)

where DN
µ is the covariant derivative for a field transforming in the fundamental representation and DN

µ

is the covariant derivative for a field transforming in the anti-fundamental representation.

As we can see, a moose site can either be underlined or not underlined:

SU(N) ≡ gauge symmetry group
SU(N) ≡ global symmetry group (3)

An arrow into a site means that the fermion transforms in the fundamental representation of the relevant
site and an arrow out of a site means that the fermion transforms in the anti-fundamental representation.

SU(N) oo ≡ fermion in the N representation

SU(N) // ≡ fermion in the N representation (4)

Note that in this moose notation, there is no easy way to designate a fermion field to transform under
three or more symmetries because an arrow only has two ends. Note also that our fermion fields can only
transform in the fundamental or anti-fundamental representations of a group. Well, you could also have
a fermion transform in the adjoint representation by having a moose with an arrow going into and out of
the same site:

G�� (5)

This works because we know that for SU(N)

fundamental⊗ anti-fundamental = adjoint⊕ singlet. (6)

But you won’t get anywhere with the moose if you want to use obscure higher dimensional representations.
(Or even something as simple as the 16 of SO(10).

As a goofy illustration of the moose, I will draw the moose for one generation of the standard model.
Note that there is no simple way to write down hypercharges with the moose, either.
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||xxxx

dc xxxx
ec

(7)
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What is interesting about this moose is that it makes no reference to the Higgs mechanism. Even if we
put a dashed line into the SU(2) site to indicate the Higgs doublet, we wouldn’t necessarily know that
the Higgs gets a vev which spontaneously breaks SU(2) in such a way that the low energy effective theory
consists of Dirac spinors u, d, and e and Weyl spinor ν. The point is that moose diagrams are used when
symmetries are broken through QCD-like confinement, not spontaneous symmetry breaking à la Higgs.

Before talking about confinement in the moose, though, how do we know that we can really trust the
predictions of our moose theory? For an SU(N) theory with large enough N and small enough matter
content, we know that the theory will be asymptotically free, so it makes sense deep into the UV. If we
trust the predictions of QCD, then by asymptotic freedom we should trust the predictions of our moose.
But there’s one other thing we should worry about: anomalies.

3 Detour to Anomalies

In order to understand how to generate anomaly-free mooses, we will need to understand what anomalies
are an how to cancel them. If you zone out once we begin the anomaly discussion in the next section,
then all you need to know for the remainder of this talk is the following: a moose with non-Abelian gauge
interactions is anomaly-free if the same number of arrows go into and out of each gauge site. For example,
an SU(N) gauge theory is anomaly-free if there are k fermions transforming in the N representation and
k fermions transforming in the N representation.

There are subtleties when we have an Abelian U(1) symmetry. (This is the reason why you often hear
that the Standard Model has the “unique” anomaly-free matter content allowed by a SU(3) × SU(2) ×
U(1) gauge theory. The subtleties with the U(1) gauge anomalies fix the allowed hypercharges for the
chiral content.) We’ll understand these subtleties in a moment, but let’s first understand what restriction
anomalies place on moose diagrams.

Consider the following moose:

· · · // SU(L) //
ψ1

SU(M) //
ψ2

SU(N) // · · · (8)

Here ψ1 transforms in the (L,M,1) representation and ψ2 transforms in the (1,M,N) representation. So
there are L fermions in the fundamental representation of SU(M) and N fermions in the anti-fundamental
representation of SU(M). For this moose to be anomaly-free, we must have L = N . A linear moose
diagram (one with no branching) will have to be a chain of gauge groups that alternate SU(N), SU(M),
SU(N), SU(M), and so on. (Insert your favorite gauge group if you are sick of special unitary matrices.)

Similarly, consider this non-linear moose:

· · · // SU(L) //
ψ1

SU(M) //
ψ2

SU(N) // · · ·

· · · // SU(K)

OOψ3

(9)

This has L + K fermions transforming in the fundamental representation of SU(M) and N fermions
transforming in the anti-fundamental representation of SU(M), so for this moose to be anomaly-free, we



Mooses, Anomalies, and Deconstruction 4

must have L + K = N . Of course, you could imagine having fermions that transform in more exotic
representations of SU(N) (or even more exotic gauge groups). In those cases, you would have to be more
careful about anomaly cancellations and will most likely have to calculate triangle diagrams to check that
everything works out. As mentioned already, every moose that you will encounter will only have fermions
that transform in the fundamental or anti-fundamental representations of the relevant gauge groups.

There are certain cases where the gauge group we are considering has a real (as opposed to complex)
fundamental representation. Consider, for example the N of any SO(N) or the 2 of SU(2). In those cases,
the arrows are meaningless, and in particular, there are no anomalies associated with lines with no arrows.
So the following moose is fine:

SO(N) // SU(M) (10)

Recall that underlining a group means that the group is only a global symmetry not a gauge symmetry.
The arrow on the line refers only to the global SU(M) and is meaningless for the gauged SO(N).

But we still haven’t answered the question: what are anomalies and why are they associated with
triangle diagrams? An anomalous symmetry is a symmetry of the Lagrangian that holds when we treat
the fields as classical fields, but breaks down when we treat the fields as quantum fields. As Nima remarked
in his last QFT lecture, these anomalies appear in the IR as non-trivial boundary gauge field configurations.
In the UV, anomalies make it impossible to make a guess for the UV physics (i.e. choose a regulator for
the path integral) that respects the classical symmetry.

There are two types of anomalies: anomalies that violate global symmetries and anomalies that violate
gauge symmetries. Global anomalies are certainly important for understanding the quantum structure of
a theory, but no one is going to be too upset if the chiral symmetry that protects, say, the mass of a Weyl
fermion turns out to be anomalous. Gauge anomalies, however, are absolutely disastrous. The unitarity
of a gauge theory rests on the existence of the gauge symmetry, so if that symmetry is fundamentally
incompatible with a quantum regulator, then the gauge theory won’t make sense as a quantum theory.
Therefore, we want our gauge theories to be anomaly-free, and in order to do that, we have to choose the
chiral content of our theories very carefully.

4 Chiral Anomalies

Consider a general gauge theory of chiral fields. The matter part of the Lagrangian looks like:

Lmatter =
∑
i

ψiiσ
µDµψi. (11)

Because this is a gauge theory, we have the standard gauge symmetry. In particular, we can look at the
global version of the gauge symmetry under which

ψi → eiθ
aT

(i)
a ψi, δaψi = iT (i)

a ψi (12)

where T (i)
a is the generator of the gauge theory corresponding to the representation of the i-th field. Using

Noether’s theorem, we can derive the conserved current associated with this global symmetry.

jµa =
∑
i

∂L
∂(∂µψi)

δaψi = −
∑
i

ψiσ
µT (i)

a ψi (13)
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It’s often convenient to drop the minus sign in the definition of jµa .

Classically, we know that ∂µj
µ
a = 0, but what if this global symmetry is anomalous? Because this

global rotation is a subset of the full gauge symmetry, if ∂µj
µ
a 6= 0 at the quantum level, then this anomaly

violates the gauge symmetry that keeps the theory unitary. So it is imperative that we check to make sure
that jµa is conserved (at least) perturbatively.

Treating jµa as an operator in momentum space, we want check if

iqµ · 〈ext| jµa (qµ) |0〉
?=0 (14)

for all external states. This is equivalent to showing that the Noether current is conserved quantum
mechanically. Let’s check this to one loop order.

In perturbation theory, the operator jµa looks like the vertex

jµa → � =
∑
i

σµT (i)
a . (15)

Classically, we know that the divergence of the operator vanishes, so we expect that at tree level, the
divergence of this vertex when applied with two external fermion lines should vanish. The anomaly is a
quantum effect, so we need to form loops somehow. The only other vertex relevant to our calculation is
the standard gauge-fermion vertex:

�i
i

a, µ

= igσµT (i)
a (16)

We can try forming the following loop with jµa :

� (17)

It turns out that with fermion legs, there is no anomaly. What about with external gauge bosons?

� + crossed (18)

We will see that a possible source for an anomaly is from triangle diagrams like these with two external
gauge boson legs. Of course, you could imagine a diagram like:

� (19)

This would give additional contributions to the anomaly, but for our purposes, it is sufficient to focus on
the triangle anomaly.
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Now, at this point, we could go and calculate the possible anomaly contribution using a careful
application of dimensional regularization. The argument is presented in Peskin and Schroeder, Chapter 19,
but they insist on using Dirac fermions, which I think masks the real argument. As we’ll see momentarily,
any theory of Dirac fermions is necessarily free of chiral gauge anomalies, so they have to do a lot of γ5

nonsense to isolate the left and right chiral components.

With Weyl fermions, we can see that in general we don’t expect a cancellation of the two diagrams
below:

�a c

b

+ �a c

b

(20)

In fact, we expect that they should roughly be proportional to:

〈ext| ∂µjµa (xµ) |0〉 ∝
∑
i

tr(T (i)
a T

(i)
b T (i)

c + T (i)
a T (i)

c T
(i)
b ). (21)

(I guess it’s less than obvious that there should be a plus sign between these two terms. All I can say is
that crossing the diagram doesn’t introduce any new factors.) The trace comes from the fermion loop and
the group generators come from the Feynman rules for jµa and the gauge-fermion vertex. We might hope
that dotting iqµ into the amplitude might help things (à la the Ward identity), but it turns out that this
doesn’t work. The quantity

A(i)
abc = tr(T (i)

a {T (i)
b , T (i)

c }) (22)

determines the anomaly contribution from the i-th fermion, and the relation∑
i

A(i)
abc

?=0 (23)

determines whether the theory is anomalous or not. Now we see why the choice of the matter content of
a theory can drastically affect unitarity.

Let’s say that we have a SU(N) gauge theory of 2k chiral fields, k in representation N and the other
k in representation N. Can we write ANabc in terms of ANabc? If TN generates the transformation

ψ → (1 + iθaTNa )ψ, (24)

then taking the complex conjugate to find the generators of the conjugate representation

ψ∗ → (1− iθa(TNa )∗)ψ∗ ≡ (1 + iθaTNa )ψ∗. (25)

The generators of a Lie Algebra are Hermitian, so

TNa = −(TNa )∗ = −(TNa )†∗ = (−TNa )T . (26)

Calculating ANabc:

ANabc = tr(TNa {TNb , TNc }) = tr
(
(−TNa )T {(−TNb )T , (−TNc )T }

)
= −tr({TNc , TNb }TNa ) = −ANabc (27)

We see right way that we have the cancellation

k · ANabc + k · ANabc = 0, (28)
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so as advertised, a gauge theory with equal number of chiral fields in the fundamental and anti-fundamental
is anomaly-free. Similarly, recall that a Dirac fermion can be written as

ψ =
(
ψL
ψR

)
, (29)

so if ψ transforms in representation R, ψL transforms in R and ψR transforms in R. Therefore, the
theory is anomaly-free if all the fermions are grouped into Dirac spinors. Continuing, we can use the same
algebra above to convince ourselves that a real representation will never contribute to the anomaly because
AReabc = −AReabc = 0.

Here are some facts about Lie Algebras that you might find interesting. The only simple groups
with complex representations (and therefore the only simple groups that can have anomalies) are SU(n),
S0(4n+2), and E6. It turns out that the quantity Aabc is proportional to a symmetric group invariant dabc,
and from the above groups, the only ones that have such an invariant (and therefore could be anomalous)
are SU(n) and SO(6). In particular, gauge theories based on SO(4n + 10) for n ≥ 0 and E6 can have
arbitrary matter content and remain anomaly-free, even if there are unmatched complex representations.
Therefore, you might try cooking up a unified theory out of, say, SO(10).

Finally, a word about U(1) gauge theories. Clearly, the cube of the U(1)Y charges have to sum to
zero because for a U(1) symmetry we have A(i)

Y Y Y = q3i . If we have a U(1)Y × SU(N) gauge theory, then
we also have terms like A(i)Y aa = 2qitr(T

(i)
a T

(i)
a ) = 2qiC(i) whose sum over i has to vanish. (Note that

A(i)Y Y a is zero for any simple group because the trace of each generator vanishes.) The subtlety comes
in when instead of having gauge bosons on the external legs of our triangle diagram, we have gravitons
on the external legs. In that case, we have something like A(i)

agg ∝ tr(T (i)
a ). For simple non-Abelian groups

this vanishes, but for U(1), we have to satisfy the additional constraint that the sum of the U(1) charges
must be zero.

5 Confinement and the Moose

Now we are ready to talk about confinement in moose diagrams. We are all familiar with QCD-like theories
like the following moose:

SU(M)L //
ψ1

SU(N)C //
ψ2 SU(M)R (30)

As we descend in energy to the confinement scale ΛQCD, the only degrees of freedom which can remain are
SU(N) singlets. In particular, we will have a spectrum of “hadrons” with masses on the order of ΛQCD,
and we will form the condensate 〈ψ1ψ2〉. This condensate will break the global SU(M)L × SU(M)R to
the diagonal subgroup SU(M)D. The goldstones from this spontaneous symmetry breaking will yield an
SU(M)’s worth of pions. Note that all of the fermions in this model are massive, whereas the massless
goldstones are bosons.

Georgi was motivated to use the moose to try to find a QCD-like theory that yielded massless fermions
below the confinement scale. We know that the Standard Model has only massless fermions above the Higgs
scale, so it is tempting to try to find out whether the Standard Model fermions could be composite fermions
in the same way that the baryons are composite fermions. But QCD alone only produces fermions with
masses of the confinement scale and the spectrum of massless particles are bosons, not fermions.
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Consider the following extension of QCD:

SU(M)L //
ψ1

SU(N)strong //
ψ2

SU(M)weak //
ψ3 SU(N)R (31)

Note that from our anomaly discussion, the order of the global and gauge groups are completely fixed by
the requirement of anomaly cancellation. The labels “strong” and “weak” tell us that the confinement
scale of SU(N)strong is much greater than the confinement scale SU(M)weak.

At the confinement scale Λstrong, we form a spectrum of “hadrons” and the condensate 〈ψ1ψ2〉. This
condensate will break the SU(M)L×SU(M)weak down to a diagonal SU(M)D, but because SU(M)weak is
gauged, some of Goldstone bosons from the spontaneous symmetry breaking will be eaten by SU(M)weak
to form the longitudinal modes of the now massive gauge field. In fact, all of the Goldstone bosons will
be eaten, because there is an SU(M)’s worth of broken symmetry and an SU(M)’s worth of longitudinal
modes.

It’s actually worthwhile to show this explicitly. Under the SU(M)weak gauge transformation, the
condensate 〈ψ1ψ2〉 = 4πf3U transforms like (f ' Λstrong/4π):

U → Ueiθa(x)Ta
(32)

We want to form a gauge invariant action involving the unitary U ’s. (How do we know that it’s unitary?)
The low energy effective Lagrangian for the U field has to be the non-linear sigma model

L = − 1
2g2

trF 2 + f2 tr
(
(DµU)†DµU

)
, (33)

with DµU = ∂µU + iUTaA
a
µ. When U takes its vev 〈U〉 = 1, the Lagrangian becomes (in canonical

normalization)

L = −1
2
trF 2 + (fg)2 tr(AµAµ) (34)

which contains the desired gauge boson mass term with m = fg.

Below Λstrong, we can integrate out the SU(M) hadrons and the SU(N)weak massive gauge bosons.
Because all of the goldstones were eaten, all we have left is the fermion field ψ3. Note that ψ3 now
transforms as a (M,N) under the global SU(M)D × SU(N)R symmetry. Therefore, there is no way to
form a mass term mψ3ψ3, because it would violate the global chiral symmetry! So we have found a moose
that generates massless fermions below the confinement scale.

Of course, if we reverse “strong” and “weak” in the moose, then below the confinement of SU(M)strong,
we have the fermion field ψ1 which transforms as a (M,N) under the global SU(M)L×SU(N)D symmetry
and therefore is massless. Georgi goes on to show that even if the gauge groups are of comparable strength,
the gauge singlet 〈ψ1ψ2ψ3〉 will become the desired composite fermion with a (M,N) chiral symmetry that
protects its mass.

We could go on to explore more mooses with more interesting confinement pictures. All of the linear
mooses (i.e. ones with no branching) exhibit roughly the same behavior as the models above. To form
reasonable models of interacting massless composite fermions, we need to go to non-linear mooses, that is,
mooses with lots of branching that resemble (duh!) the antlers of a moose. But we aren’t done will linear
mooses quite yet. What happens if we go to the limit of a large number of gauge sites on a linear moose?
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6 Deconstruction

Even better, let’s link the gauge sites into a circle with 2N sites (N SU(M)’s and N SU(N)’s). We will
see that this moose will become a picture of an extra compact dimension.

/.-,()*+ // /.-,()*+�������� // /.-,()*+
��

???
???/.-,()*+��������

??���
���

/.-,()*+��������
��

???
???/.-,()*+

??���
���

/.-,()*+
��

...
/.-,()*+��������
��

/.-,()*+ /.-,()*+
�����

���/.-,()*+��������
__???

???

/.-,()*+��������
�����

���/.-,()*+
__???

???

/.-,()*+��������oo /.-,()*+oo

(35)

The singly circled sites are weak SU(M)’s and the doubly circled sites are strong SU(N)’s. For simplic-
ity, we assume that the coupling constants are the same for each type of gauge group. This moose is
asymptotically free and anomaly-free for most M and N .

Looking more closely at the i-th side of this moose:

_^]\XYZ[i //
χi,i _^]\XYZ[WVUTPQRSi //

ψi,i+1 _^]\XYZ[i+ 1 (36)

When SU(N)i gets strong, the χ’s and ψ’s will have to arrange themselves into SU(N)i singlets. In analogy
with the linear mooses we’ve already seen, this will produce a spectrum of hadrons with masses around
Λstrong. We’ll also form the condensate

〈χi,iψi,i+1〉 ' 4πf3Ui,i+1 (37)

Again, U is unitary. (Why?) Under the weak SU(M)’s, this condensate transforms like

Ui,i+1 = g−1
i (x)Ui,i+1gi+1(x) (38)

where gi is an element of the i-th SU(M)weak. We can draw a condensed moose to describe the condensed
theory (minus the hadrons). The dashed lines will now correspond to a unitary (bosonic) field.

/.-,()*+ //__ __ /.-,()*+
��

?
?

?

?
?

?
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??�
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�
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�
�
�

�
�
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/.-,()*+ /.-,()*+
���

�
�

�
�

�
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?
?

?
?

?

/.-,()*+oo_ __ _

(39)
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We want to form a gauge invariant low energy effective Lagrangian for the U ’s. Our only choice is the
non-linear sigma model

L = − 1
2g2

N∑
j=1

trF 2
j + f2

N∑
j=1

tr
(
(DµUj,j+1)†DµUj,j+1

)
(40)

with DµUj,j+1 = ∂Uj,j+1 − iAjµUj,j+1 + iUj,j+1A
j+1
µ . (Recall that Aj = AjaT a.)

Before going on, one might ask why we didn’t just start with the condensed moose instead of going
through this whole argument about condensing a non-Abelian gauge theory. The reason is that the non-
linear sigma model breaks down at an energy 4πf , so the condensed moose needs a UV completion.
The uncondensed moose is one possible UV completion that not only raises the cutoff above 4πf ; it is
asymptotically free so it makes sense up to arbitrarily large energies. In a sense, deconstruction will tell us
that there exists a UV completion to a gauge theory with a latticized compact fifth dimension, such that
predictions made in the low energy theory can be trusted up to operators suppressed by 4πf .

What happens when the U ’s take their vev? (Equivalently, what happens in unitary gauge?) From
what we’ve seen with other linear mooses, we expect that this will result in a non-trivial mass matrix for
the gauge bosons. In particular,

Lmass = (gf)2
N∑
j=1

tr
(
Ajµ(2Ajµ −Aj−1

µ −Aj+1
µ )

)
(41)

Following [3], we can diagonalize the mass matrix to arrive at the following spectrum of gauge boson
masses:

mk =
∣∣∣∣2gf sin

(
πk

N

)∣∣∣∣ (42)

for all integers |k| ≤ N/2. In the limit as N →∞ while holding R = N/gf fixed, the masses become

mk '
2π|k|
R

(43)

which is a standard Kaluza-Klein spectrum for a compact dimension of circumference R. This is our first
hint that our moose is really the picture of an extra dimension.

We can go further and show that our Lagrangian really represents a gauge theory with a compact
latticized fifth dimension. The Wilson line from site i to i+ 1 is

Ui,i+1(xµ) = P exp

(
i

∫ a(i+1)

ai
dx5A5(xµ, x5)

)
(44)

where a is the lattice spacing and P is path-ordering. Under a gauge transformation, the Wilson line
transforms as

Ui,i+1(xµ) = g−1
i (xµ)Ui,i+1(xµ)gi+1(xµ). (45)

So to form a gauge invariant Lagrangian out of the Wilson lines, we have to have the same Lagrangian as
in eqn. (40). You might wonder why we couldn’t have a term in the Lagrangian like

L? = tr

( N∏
i=1

Ui,i+1

)
(46)
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with N + 1 ≡ 1. This would represent a Wilson line that went all the way around the extra dimension. It
is certainly gauge invariant, but it represents a global rather than local interaction of the gauge field.

Finally, note that by dimensional analysis, the lattice spacing a must be proportional to 1/f . Recall
that the we defined the circumference of the the extra dimension as R = N/gf , so if we say that the
circumference is also equal to Na (i.e. the number of sites times the spacing between the sites), we find
that a = 1/fg. We could go on and show that the four dimensional gauge coupling is related to the five
dimensional gauge coupling in the desired way, or that there exists a notion of five dimensional Lorentz
invariance. In a sense, all of these follow from the fact that lattice gauge theory reduces to continuum
gauge theory in the limit of small lattice spacing. Once we see the Lagrangian in eqn. (40), we know that
a fifth dimension has truly emerged.

7 Looking Ahead

Now that’s we’ve developed the language of mooses, we have many directions we could explore. We could
return to the idea of QCD-like confinement to try to find a moose diagram that generates the Standard
Model at low energies. We could try to use deconstruction to generate more than one extra dimension, or
even spaces with non-trivial topology. And, as Rakhi will show at the end of the month, we could extend
the notion of gauge sites and link fields to gravity, where the “symmetry” that guarantees unitary is general
covariance. She will show that the gravitational moose will not only give us an easy way to understand
massive gravitons, but also a way to generate a lattice theory of gravity.
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