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1 Motivation

Is there any reason to expect that our universe is supersymmetric? We could just as well ask if we have any
reason to expect our universe to be homogeneous (translationally invariant) or isotropic (rotationally/boost
invariant). Supersymmetry is just an extended space-time symmetry, so while it might appeal to our
aesthetics, SUSY is no way guaranteed by physical principles, just as homogeneity and isotropy are not
necessary ingredients in quantum field theory. The fact that our universe is (to an excellent approximation)
homogeneous and isotropic can either be looked at as a lucky coincidence or as the realization of some
“deep fundamental principle.”

We can look at this in a slightly different light by going back to extra dimensions. If the brane world
proponents are correct, then the supposed translational invariance in the extra dimensions is (sponta-
neously?) broken by our brane. Similarly, we could have supersymmetry without ever realizing it if there
was some (spontaneous?) mechanism by which supersymmetry was broken. The fact that we haven’t
yet seen experimental evidence for SUSY suggests that to understand supersymmetry, we have to learn
not only what SUSY is and how it works, but also how a seemingly fundamental extended space-time
symmetry could be broken to give us the universe we observe at low energies. Hopefully, we will have some
understanding of these topics by the end of the summer.

So why SUSY in the first place? From the phenomenological point of view, we will see in subsequent
talks that SUSY presents a mechanism for stabilizing the Higgs mass, so SUSY would give a natural
solution to the hierarchy problem. From a numerological point of view, the beta functions in the minimally
supersymmetric Standard Model (MSSM) show a unification of the gauge couplings at around 1016 GeV.
Whether this is impressive or not depends on your opinion about GUTs. For our stringy friends, SUSY
is somehow necessary/desired, so we should understand the effects of SUSY at scales much larger than
the string scale. Finally, from an aesthetic point of view, the Haag-Lopuszanski-Sohnius extension of
the Coleman-Mandula theorem tells us that the only (extended) space-time symmetries that can appear
in non-trivial quantum field theories are translations, boosts/rotations, and SUSY. For some reason, we
physicists take great pride in saying “...and that’s it.”

This summer, one of our goals is to understand SUSY and SUSY breaking. In this talk, I will review
the N = 1, d = 4 supermultiplet formalism, and use it to write down the MSSM. Next time, Jason will talk
more about the MSSM and SUSY breaking in order to understand how the MSSM even has a chance to
describe our universe. We can easily do this phenomenologically through “soft terms” in the Lagrangian,
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but we should also look at some of the proposed spontaneous mechanisms. Later in the summer, Devin
will talk about renormalization in supersymmetric theories. In particular, he will discuss the cancellation
of UV divergences and the NSVZ beta function. Also, we should consider looking at SUSY with N > 1 in
d > 4 to connect with some of the more exotic SUSY theories.

2 The Symmetry of Supersymmetry

As Nima remarked in his introduction to Supersymmetry, SUSY is not so dissimilar from usual space-time
translation symmetry. If we have a function f(xµ), we know that we can apply a translation using the
energy-momentum four-vector:

e−iaµPµf(xµ) = f(xµ + aµ). (1)

Similarly, if we have a function of a fermionic (Grassman) coordinate θ, we expect that there should be a
generator of fermionic translations Q such that

eηQf(θ) = f(θ + η). (2)

(Note the lack of a factor of i in the exponent. Based on the definition of Q later, this will correspond to
my notion that eη

∂
∂θ f(θ) = f(θ + η) in analogy with ea

∂
∂x f(x) = f(x+ a).) More generally, we can think

of θ, η, and Q as Weyl spinors, and the above equation reads

eη
αQαf(θα) = f(θα + ηα), (3)

where we raise and lower Weyl indices with respect to the epsilon tensor.

What if we have a function of both bosonic (xµ) and fermionic (θα, θ̄β̇) coordinates? We could certainly
think about translating this function in the fermionic direction via

eη
αQα+Q̄β̇ η̄β̇

f(xµ, θα, θ̄β̇) ?= f(xµ, θα + ηα, θ̄β̇ + η̄β̇). (4)

For this to work we would have to assume the anti-commutation relation {Qα, Q̄β̇} = 0. But this is not
the most general anti-commutation relation consistent with Lorentz covariance. Using the sigma matrices,
we could have

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, (5)

with the factor of 2 set by convention. In fact, this gives us the SUSY (N = 1) algebra:

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, [Qα, Pµ] = [Q̄α, Pµ] = 0, [Pµ, Pν ] = 0. (6)

(More generally, we could have a set of anti-commuting supercharges QA, Q̄A where A runs from 1 to k.
This would be an N = k superalgebra.)

Of course, an algebra isn’t much use if we don’t have a concrete representation of it. Try

Pµ = i∂µ, Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ, Q̄β̇ = − ∂

∂θ̄β̇
+ iθασµ

αβ̇
∂µ. (7)

Now applying our translation in the fermionic direction (dropping Weyl indices and specializing to the
limit of infinitesimal η and η̄):

eηQ+Q̄η̄f(xµ, θ, θ̄) = eη
∂
∂θ
−iησµθ̄∂µ− ∂

∂θ̄
η̄+iθσµη̄∂µf(xµ, θ, θ̄) = f(xµ − iησµθ̄ + iθσµη̄, θ + η, θ̄ + η̄) (8)
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This is the infinitesimal translation we saw before:

xµ → xµ − iησµθ̄ + iθσµη̄, θ → θ + η, θ̄ → θ̄ + η̄. (9)

Then again, this is not the only representation. We could try the left chiral representation

Pµ = i∂µ, QL
α =

∂

∂θα
, Q̄L

β̇
= − ∂

∂θ̄β̇
+ 2iθασµ

αβ̇
∂µ, (10)

under which our fermionic translation becomes

fL(xµ, θ, θ̄) → fL(xµ + 2iθσµη̄, θ + η, θ̄ + η̄). (11)

Or we could try the right chiral representation

Pµ = i∂µ, QR
α =

∂

∂θα
− 2iσµ

αβ̇
θ̄β̇∂µ, Q̄R

β̇
= − ∂

∂θ̄β̇
, (12)

under which our fermionic translation becomes

fR(xµ, θ, θ̄) → fR(xµ − 2iησµθ̄, θ + η, θ̄ + η̄). (13)

For reference, the connection between the different chiral representations are

f(xµ, θ, θ̄) = fL(xµ + iθσµθ̄, θ, θ̄) = fR(xµ − iθσµθ̄, θ, θ̄). (14)

To see this, apply the operator eηQ+Q̄η̄ in the standard representation to each side of this equation.

3 Chiral Multiplets

The reason why the chiral representations are useful, is that they allow us to define functions that are
independent of either θ or θ̄. In the standard representation, the SUSY translation eηQ+Q̄η̄ mixes xµ with
both θ and θ̄. But in the left (right) chiral representation, the SUSY translation only mixes xµ with θ (θ̄).
Therefore, it is perfectly natural to define ΦL(x, θ) to be independent of θ̄ and ΦR(x, θ̄) to be independent
of θ.

At this point, it is customary to expand ΦL in terms of component fields. Because θα is anticommuting
and α runs from 1 to 2, the most general expansion is

ΦL(xµ, θα) = φ(xµ) +
√

2θαψα(xµ) + θαθαF (xµ), (15)

where the factor of
√

2 is set by convention. So the multiplet ΦL contains a complex scalar field φ, a Weyl
spinor ψα, and an auxiliary field F .

How does our fermionic translation (hereafter called a SUSY transformation) act on the component
fields of ΦL? We expect that a SUSY transformation of a chiral multiplet should yield another chiral
multiplet. In particular, for an infinitesimal transformation:

δΦL(xµ, θα) = ΦL(xµ + 2iθσµη̄, θα + ηα)− ΦL(xµ, θα)
= φ(xµ + 2iθσµη̄) +

√
2(θα + ηα)ψα(xµ + 2iθσµη̄) + (θα + ηα)(θα + ηα)F (xµ + 2iθσµη̄)

− φ(xµ)−
√

2θαψα(xµ)− θαθαF (xµ)
=

√
2ηψ(x) +

√
2θ(i

√
2σµη̄∂µφ(x) +

√
2ηF (x)) + θθ(−i

√
2∂µψ(x)σµη̄). (16)
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So we see that under a SUSY transformation, the component fields transform as

δφ =
√

2ηψ,
δψ =

√
2ηF + i

√
2σµη̄∂µφ,

δF = −i
√

2∂µψσ
µη̄. (17)

In component field language, we see that a SUSY transformation mixes bosonic and fermionic fields. In
other words, what looks like a space-time translation in superfield language becomes a symmetry that links
fields with different statistics. This is the power of SUSY. Note also that the field F transforms as a total
derivative under SUSY. We’ll need this later on when constructing a SUSY Lagrangian.

Note the product of two left chiral multiplets is another left chiral multiplet. We can see this easily
by direct multiplication, or by noting that a function of xµ and θ multiplied by another function of xµ and
θ is yet another function of xµ and θ.

Finally, it will be convenient to have SUSY-covariant derivatives at our disposal. In the standard
representation:

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ, D̄β̇ = − ∂

∂θ̄β̇
− iθασµ

αβ̇
∂µ. (18)

In the left chiral representation:

DL
α =

∂

∂θα
+ 2iσµ

αβ̇
θ̄β̇∂µ, D̄L

β̇
= − ∂

∂θ̄β̇
, (19)

and similarly for the right chiral representation. Note that

{Dα, Qα} = {D̄α̇, Qα} = {Dα, Q̄α̇} = {D̄α̇, Q̄α̇} = 0, (20)

which justifies the name “SUSY-covariant derivative.” We can then define left and right chiral fields by

D̄ΦL = 0, (21)

DΦR = 0. (22)

Don’t confuse left and right chiral fields with left and right chiral representations. Certainly, a left chiral
field takes on a special form in the left chiral representation (i.e. D̄LΦL = 0 implies that ΦL is independent
of θ̄). But we can certainly have a left chiral field expressed in the right chiral representation if it satisfies
D̄RΦ(R)

L (x, θ, θ̄) = 0. In this representation, ΦL doesn’t have any special properties.

4 Vector Multiplets

The chiral condition was one kind of constraint we could put on a superfield. The constraint that defines
the vector multiplet is self-conjugation:

V (x, θ, θ̄) = V †(x, θ, θ̄). (23)
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We can again expand V in components. The terms will have up to 2 θs and up to 2 θ̄s. The expansion I
will use looks very contrived at first, but it will become useful when we talk about gauge invariance:

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x)

+
i

2
θθ (M(x) + iN(x))− i

2
θ̄θ̄ (M(x)− iN(x))

+ θ̄σ̄µθAµ(x) + iθθθ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
− iθ̄θ̄θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1
2
θθθ̄θ̄

(
D(x) +

1
2
�C(x)

)
. (24)

For this to be self-conjugate, C, D, M , N , and Aµ must be real functions.

Again, the reason to use this expansion is gauge transformations. A gauge transformation in ordinary
field theory is

φ(x) → eiqα(x)φ(x),
Aµ(x) → Aµ(x)− ∂µα(x), (25)

where α(x) is a real function. We want to duplicate this in superspace. If we multiply a left chiral multiplet
by a real function of x, then we no longer have a left chiral multiplet because D̄Φ 6= 0. Therefore, a gauge
transformation on a chiral multiplet should look like

Φ → eqΛΦ, (26)

where Λ is another chiral multiplet.

What about for the vector multiplet? We’re going to need to do some mysterious algebra to figure this
out. First, let’s write down a left chiral multiplet using the ordinary representation of the SUSY algebra.
By equation (14):

Φ(x, θ, θ̄) = ΦL(xµ + iθσµθ̄, θ, θ̄)
= φ(xµ + iθσµθ̄) +

√
2θαψα(xµ + iθσµθ̄) + θαθαF (xµ + iθσµθ̄)

= φ(xµ)− iθ̄σ̄µθ∂µφ(xµ) +
1
4
θθθ̄θ̄�φ(xµ) +

√
2θψ(xµ) +

i√
2
θθθ̄σ̄µ∂µψ(xµ) + θθF (xµ).(27)

Now consider the expression Φ + Φ† (I told you this would seem mysterious):

Φ + Φ† = φ+ φ∗ +
√

2(θψ + θ̄ψ̄) + θθF + θ̄θ̄F ∗ − iθ̄σ̄µθ∂µ(φ− φ∗)

+
i√
2
θθθ̄σ̄µ∂µψ +

i√
2
θ̄θ̄θσµ∂µψ̄ +

1
4
θθθ̄θ̄�(φ+ φ∗). (28)

Recall that the θ̄σ̄µθ component of V was Aµ, and here we see that the θσµθ̄ component of Φ + Φ† is
−i(φ − φ∗) which is a real function. Renaming Φ to Λ, this suggests that a gauge transformation on a
vector multiplet should be

V → V − Λ− Λ†, (29)

for some chiral multiplet Λ. In particular, under this gauge transformation:

C → C − φ− φ∗,
χ → χ+ i

√
2ψ,
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M + iN → M + iN + 2iF,
Aµ → Aµ + i∂µ(φ− φ∗),
λ → λ,

D → D. (30)

We see that we can pick a particular gauge (Wess-Zumino gauge) by choosing Re(φ), ψ, F appropriately
to set C, M , N , and χ to zero. Note that in W-Z gauge, we still have the gauge freedom of Im(φ) to
maintain the standard gauge symmetry Aµ → Aµ − ∂µα. In W-Z gauge, the component field expansion
for V is:

V (x, θ, θ̄) = θ̄σ̄µθAµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1
2
θθθ̄θ̄D(x). (31)

Here, Aµ is a gauge field, λ is a Weyl spinor (called the gaugino), and D is an auxiliary field.

We could again apply the SUSY transformation to V and we would find that, as expected, D transforms
as a total derivative. We will use this fact when constructing our SUSY Lagrangian. For reference:

δAµ = iησµλ̄+ iη̄σ̄µλ,

δλ = iηD + σµνηFµν ,

δD = η̄σ̄µ∂µλ− ησµ∂µλ̄ (32)

where σµν = σµσ̄ν − σν σ̄µ and Fµν = ∂µAν − ∂νAµ. (Don’t confuse Fµν with the auxiliary field F , and
don’t confuse the SUSY-covariant derivative Dα with the auxiliary field D.)

Note if we have a left chiral multiplet Φ, then the product Φ†Φ and the sum Φ+Φ† are vector multiplets
because they are self-conjugate. Similarly, we might ask whether it is possible to go the other way and
build a chiral multiplet out of a vector multiplet. Define the object:

Wα = D̄D̄DαV. (33)

This is a left chiral multiplet because D̄Wα ∝ D̄3 = 0. Note that it carries a Weyl spinor index. You might
ask why we didn’t just consider the expression Z = D̄D̄V . The reason is that Wα is gauge invariant while
Z is not, and we know that to get a unitary theory of a massless spin-1 field we need our Lagrangian to be
gauge invariant. Wα will play the same role as Fµν in ordinary gauge theories. (To check gauge invariance
recall that D̄Λ = DΛ† = 0 for Λ a left chiral multiplet.)

Finally, we can extend the discussion to non-Abelian gauge theories by defining V = VaT
a and

Λ = ΛaT
a, where Va is a set of vector multiplets, Λa is a set of left chiral multiplets that correspond

to our gauge transformation, and T a are the generators of the relevant gauge group (in the relevant
representation). If Φ is a left chiral multiplet in some representation of the gauge group, then the gauge
transformation now looks like:

Φ → eΛΦ,

Φ† → Φ†eΛ
†
,

eV → e−Λ†
eV e−Λ. (34)

We also define
Wα = D̄D̄e−VDαe

V , (35)

which has the transformation property
Wα → eΛWαe

−Λ. (36)
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5 SUSY Lagrangians

Now we have all the tools necessary to build SUSY invariant actions. If we define an action by

S =
∫
d4x L(x), (37)

then it will be SUSY invariant if L(x) transforms as a total derivative under SUSY, assuming as always
vanishing boundary conditions. We know of two objects in particular that transform as a total derivative
under SUSY: the θθ component of a left chiral multiplet and the θθθ̄θ̄ component of a vector multiplet.
This is all we’ll need to construct a very generic SUSY Lagrangian.

First, we should check the mass dimensions of our various fields. If a scalar/vector field has mass
dimension 1, and a Weyl fermion has mass dimension 3/2, then we can see that a chiral multiplet Φ has
mass dimension 1 and the fermionic coordinates θ and θ̄ have mass dimension −1/2. (The auxiliary fields
have mass dimension 2.) Plugging these into the expression for V , we see that the vector multiplet V has
mass dimension 0. Also,

∫
dθ θ = 1, so dθ has mass dimension 1/2.

In effective field theory language, we only need to worry about marginal and relevant couplings. So
the terms in our Lagrangian can have at most mass dimension 4. To extract the θθ component of a left
chiral multiplet, we can merely integrate

∫
d2θ Φ. To extract the θθ component of a vector multiplet, we

can merely integrate
∫
d2θd2θ̄ V . Ignoring the vector multiplet for the moment, the most generic SUSY

effective Lagrangian we can create just out of chiral multiplets is:

L(x) =
∫
d2θd2θ̄

∑
i

Φ†
iΦi +

∫
d2θ W (Φi) + h.c. (38)

where W is a analytic polynomial function of at most degree 3. (Recall that Φ†Φ is a vector multiplet.
The analyticity of W comes form the fact that in order for the

∫
d2θ term to be a left chiral multiplet, W

cannot have terms proportional to Φ†
i .) The function W is called the superpotential. Of course, it’s not at

all clear what this Lagrangian means in terms of component fields, but it should be immensely satisfying
that we’ve written down what amounts to the most general SUSY theory of interacting scalars and Weyl
fermions.

Let’s expand this in component fields, using

W (Φi) = kiΦi +
1
2
mijΦiΦj +

1
3
gijkΦiΦjΦk. (39)

Some relevant components in the standard representation:

Φ†
iΦi|θθθ̄θ̄ = ∂µφ

∗
i ∂

µφi + ψ̄iiσ̄
µ∂µψi + F ∗

i Fi,

Φi|θθ = Fi,

ΦiΦj |θθ = φiFj + φjFi − ψiψj ,

ΦiΦjΦk|θθ = φiφjFk − ψiψjφk + cyclic permutations. (40)

This gives precisely the desired kinetic terms. Also, the coefficients mij really look like fermion mass
parameters and the coefficients gijk look like Yukawa couplings! If we think of W just as a function of φi

we can write the Lagrangian compactly as:

L(x) = ∂µφ
∗
i ∂

µφi + ψ̄iiσ̄
µ∂µψi + F ∗

i Fi +
(
∂W (φi)
∂φj

Fj −
1
2
∂2W (φi)
∂φj∂φk

ψjψk + h.c

)
. (41)
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We can easily integrate out the auxiliary field through the equation of motion

∂L
∂Fj

= ∂µ
∂L

∂ ∂µFj
(42)

because L is independent of ∂µF . We find that

F ∗
j = −∂W (φi)

∂φj
. (43)

Plugging in for F and F ∗, our Lagrangian now reads

L(x) =
∑

i

(
∂µφ

∗
i ∂

µφi + ψ̄iiσ̄
µ∂µψi

)
−

∑
j

∣∣∣∣∂W (φi)
∂φj

∣∣∣∣2 −∑
j,k

(
1
2
∂2W (φi)
∂φj∂φk

ψjψk + h.c.

)
. (44)

As we saw on problem set 2, W = 1
2mφ

2 is a free theory with scalar and Weyl fermion of exactly the same
mass. A theory with W = 1

3gφ
3 has massless fields with a Yukawa coupling −gφψψ+h.c. and scalar inter-

action g2(φ∗φ)2. More complicated superpotentials involving more superfields will give more complicated
interactions of the component fields. The thing to remember is that the superpotential determines all of
the interactions in the theory.

What if we want to construct a gauge invariant Lagrangian? By our definition of a gauge transforma-
tion, the object Φ†eV Φ is gauge invariant. Also, we can imagine constructing gauge invariant combinations
of the chiral multiplets in the superpotential. And the object Wα is gauge invariant and a chiral multiplet,
so the θθ component of tr(WαW

α) can appear in our Lagrangian. So we have

L(x) =
∫
d2θd2θ̄

∑
i

Φ†
ie

V Φi +
∫
d2θ WG.I.(Φi) + h.c.+

∫
d2θ

1
g2

tr(WαW
α) + h.c. (45)

(Don’t confuse the superpotential W with the chiral field Wα that was constructed from V . Also, I’m not
completely sure about the numerical coefficient in front of 1/g2.) Note that Wα has mass dimension 3/2,
so terms involving higher powers of Wα won’t appear in our effective Lagrangian.

Once again, we can expand this out in component fields. (We will also scale V → 2gV to correspond
to generally accepted conventions.) Starting with the first term∫

d2θd2θ̄Φ†eV Φ → DµφD
µφ∗ + ψ̄iσµDµψ + gφ∗Dφ+ ig

√
2(φ∗λψ − ψ̄λ̄φ) + F ∗F, (46)

where Dµ is the standard gauge covariant derivative Dµ = ∂µ + igAa
µT

a, D = DaT
a are the auxiliary

fields for V , and λ = λaT
a are the gauginos. (In this silly notation, D now has three meanings: as a

SUSY-covariant derivative, a gauge covariant derivative, and an auxiliary field.) These are exactly the
matter kinetic terms for a minimal coupled gauge theory. Note that for these terms to make sense, φ
and ψ must transform in the same representation of the gauge group. This will place constraints on the
superpartners in the MSSM. Also note that the couplings to the gauginos go as the gauge coupling.

The other new term in the gauge invariant Lagrangian is∫
d2θ

1
g2

tr(WαW
α) + h.c.→ −1

4
F a

µνF
µν
a +

1
2
DaDa + λ̄aiσ̄µDµλa, (47)

where F a
µν is the same one from ordinary non-Abelian gauge theory. Again, we have exactly the boson

kinetic terms necessary for unitarity. Note that λ transforms in the same representation as the gauge
bosons (namely, the adjoint representation), so Dµλa = ∂µλ

a − gfabcA
b
µλ

c. Again, we could integrate out
the auxiliary fields F and D, and we would find coupling between the matter fields that go as the gauge
coupling without actually being mediated by a gauge boson or gaugino.
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6 The Minimal Supersymmetric Standard Model

Now that we have constructed a general gauge invariant Lagrangian, we can easily write down the MSSM. In
superfield language, the MSSM looks like a straightforward extension of the {q uc dc l ec} Standard Model.
In fact, just as we could uniquely define the Standard Model in terms of the gauge group representations of
the matter fields, we can (almost) uniquely define the MSSM in terms of the the gauge group representations
of the superfields. The only real difference is that we will have to introduce another Higgs doublet. Also,
in later talks, we will need to introduce “soft terms” which characterize the SUSY breaking in order to
give a phenomenologically valid model.

The Φ†eV Φ terms in the Lagrangian are set by the gauge representations of the chiral multiplets, and
the tr(WαW

α) terms are set by the gauge groups themselves, so in order to define the MSSM, we need
only write down the group representations of the superfields and the superpotential. Here it is:

SU(3)C SU(2)L U(1)Y

Qi 3 2 +1/6

U c
i 3̄ — −2/3

Dc
i 3̄ — +1/3

Li — 2 −1/2

Ec
i — — 1

H — 2 −1/2

H̄ — 2 +1/2

WMSSM = µHH̄ +
∑
i,j

(
λE

ijHLiE
c
j + λD

ijHQiD
c
j + λU

ijH̄QiU
c
j

)
(48)

where i runs from 1 to 3 and labels the lepto-quark generations, and I have suppressed SU(2) and SU(3)
indices. (Insert epsilon tensors as needed.) Note that there are two higgs doublets, H and H̄. In order to
have interactions between Q and U c, we needed to have an SU(2) doublet with hypercharge +1/2. We
might have thought that we could use H† (the 2 of SU(2) is the same as the 2̄), but we saw before that
W had to be an analytic function of its arguments in order for it to remain a chiral multiplet. So we have
to add the H̄ field in order to give the up quark a mass after symmetry breaking.

We know that none of the Standard Model fermions can be gauginos because none of the matter fields
transform in the adjoint representation. Still, looking at the table, how do we know that the slepton of the
L field isn’t just the standard Higgs doublet? It turns out that in order for this to work, we would have to
have interactions that break lepton number. Furthermore, the neutrinos would acquire dangerously large
masses, way beyond the experimental bounds. So a two Higgs doublet with the above superpotential is
indeed the MSSM.

However, this superpotential is not uniquely determined in the same way as the interactions in the
Standard Model were uniquely determined. In the Standard Model, terms in the Lagrangian like qdcl are
excluded because they are irrelevant operators. But in the MSSM, terms in the superpotential of the form
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QDcL cannot be discarded by dimensional analysis because we can have terms with up to three superfields!
Just looking at gauge invariance, we could have the follow terms:

W? = QDcL+ LLEc +HHEc + H̄L+ U cDcDc (49)

(We’ve used the epsilon tensor in the last term.) These operators break baryon number and lepton number,
which were accidental symmetries in the standard model. Do we have any good reasons for discarding these
terms, or do we have to wave our hands to make them disappear? (The answer is R parity.) Also, what
does electroweak symmetry breaking look like in the MSSM? (The answer is that we need to break SUSY
to break electroweak.) These and other issues we’ll study in the next episode of... Beyond the Standard
Model.

7 Looking Ahead

Now that we have outlined some of the basics of SUSY, we need to step back and ask ourselves what we’ve
accomplished. Certainly, the aesthetics of SUSY is appealing; it is quite easy to write SUSY invariant
Lagrangians in the superfield formalism. And as we’ll see later in the summer, SUSY handles the quadratic
divergences at the heart of the hierarchy problem by presenting a link between bosons and fermions. But
returning to the question I asked at the beginning of this talk: do we have any reason to expect that our
universe is supersymmetric?

Certainly, by the fact that we don’t observe supersymmetric particles, we know that our universe has
a non-supersymmetric vacuum state. Thus, SUSY has to be spontaneously broken in order to have even a
chance at describing our universe. Later this summer, we’ll learn more about SUSY breaking and how it
might be accomplished.

For some physicists, the fact that SUSY controls quadratic divergences is reason enough to expect
it might be part of theories beyond the Standard Model. But we saw that in either the ADD or RS1
scenarios, the hierarchy problem can be solved using extra dimensions (without needing to reference SUSY)
by postulating that the weak scale (or some other energy scale less than ∼10 TeV) is the fundamental
mass scale, so the fine tuning of the Higgs mass is no longer a problem. Even more interesting, theory
space models (like the one Rakhi and Can are studying) can control quadratic divergences by introducing
partner particles with the same statistics. Therefore, SUSY’s raison d’être will have to go beyond just the
hierarchy problem if we want to believe that SUSY is a true symmetry of our universe.
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