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1 Introduction

All experimental evidence to date suggests that Lorentz-invariance is a good symmetry of the universe. In
some sense, the best evidence that Lorentz-invariance is not broken is the phenomenal success of General
Relativity. Diffeomorphisms (i.e. local Lorentz transformations) protect the graviton from picking up a
mass, so if Lorentz-invariance were either explicitly or spontaneously broken then we would expect the
graviton to acquire additional “longitudinal” polarizations. The fact that we have not observed gross
violations of Newton’s Law — along with the stunning success of relativistic particle physics — gives us
excellent evidence that Lorentz-invariance is preserved over a wide range of energy scales.

In this light, the theory of ghost condensation [1, 2] seems to both confirm and contradict the notion
that it is hard to build an experimentally viable effective field theory that breaks Lorentz-invariance. The
ghost condensate spontaneously breaks time diffeomorphisms at an energy scale M , and below this energy
there is a Goldstone boson that non-linearly realizes the broken symmetry. This Goldstone mode mixes
with gravity and at linearized level modifies gravity at length scales greater than rc = MPl/M

2 and at
time scales longer than tc = M2

Pl/M
3. If we demand no modification to Newton’s Law over the lifetime

of the universe, then we are forced to take M < 10 MeV. Therefore, while it is indeed possible to have a
viable, consistent theory with spontaneously broken Lorentz-invariance, the scale of Lorentz-violations in
the example of ghost condensation is very low from the point of view of particle physics.

Of course, this does not mean that there are no interesting experimental signals if time diffeomorphisms
are broken at low energy scales. As we argue in [3], the Goldstone boson associated with broken time
diffeomorphisms can mediate a Lorentz-violating inverse-square law force between spins, and this force
may be strong enough to observe at millimeter length scales. Also, there are non-linear gravitational effects
that become important even around modest gravitational sources [4], and depending on the structure of
the non-linear interactions in the theory, the scale M could be as small as y eV or as large as x GeV.

Still, we might ask whether there exists an experimentally viable effective field theory that naturally
incorporates spontaneous Lorentz-violations at high energy scales without relying on non-linear effects.
In a sense, this question is motivated by the idea that Lorentz-symmetry could be softly violated by
unknown physics at the Planck scale [ref?]. In certain string theory constructions, one finds non-zero
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vacuum expectation values for vectors and tensors at energy scales close to but less than MPl [ref?]. From
the point of view of effective field theory, it is a bit of a mystery how accelerator-scale Lorentz-symmetry
is protected from Planck-scale Lorentz-violations [ref?]. In this paper, we will show in effective field theory
language that it is indeed possible to safely break Lorentz-symmetry at a scale z GeV with minimal effect
on both gravitational and Standard Model measurements.

The idea we want to pursue in this paper is that there are a number of ways of spontaneously breaking
Lorentz-symmetry, and the choice of which — if any — breaking mechanism to use is ultimately an
experimental question. Because rotational invariance is very well tested, we expect that Lorentz-invariance
is broken at most to SO(3)-invariance. In the theory of ghost condensation, the assumption is that time
diffeomorphisms are spontaneously broken but space diffeomorphisms are preserved. If we only care about
maintaining SO(3)-invariance, then we should also consider the possibility that time diffeomorphisms are
preserved but space diffeomorphisms are spontaneously broken. This yields a different (and seemingly
unhealthy) low energy effective theory with different experimental signatures than ghost condensation,
and if we were ever to observe Lorentz-violations, we could compare the two models to see which one
better matches measurements.

In this paper, we look at a theory where time diffeomorphisms and a new U(1) gauge symmetry are
spontaneously broken down to a diagonal U(1) gauge group. For obvious reasons, we (lamely) call this
the theory of gauged ghost condensation. It may seem a bit strange to consider the diagonal subgroup
composed of a (non-compact) space-time symmetry and a (compact) internal symmetry, and while there
may be topological problems with this construction, we will see that it is straightforward to generate the
local low-energy effective Lagrangian that describes this symmetry breaking pattern.

We will also see that for large enough gauge coupling, this theory has some distinct advantages over
“ungauged” ghost condensation. In the ungauged case, the Goldstone boson associated with broken time
diffeomorphisms develops a Jeans-like instability due to mixing with gravity. While this instability is
softened by non-linear effects in the ungauged theory, the instability is completely removed in the gauged
theory for sufficiently large gauge coupling. Also, for large enough gauge coupling, the modification of
Newton’s law due to mixing with the Goldstone boson is virtually elliminated, allowing us to raise the
scale of spontaneous Lorentz-breaking high above the electroweak scale.

There is a qualitative way to understand why our theory is less dangerous for larger gauge coupling. If
the gauge coupling is zero, then there is a unitary gauge where the Goldstone boson is completely “eaten”
by the graviton. Similarly, if gravity is turned off, then there is a unitary gauge where the Goldstone boson
is completely eaten by the U(1) gauge boson. In between these two extremes, the Goldstone boson can
be “more eaten” or “less eaten” by the graviton depending on the value of the gauge coupling. Because
the graviton universally couples to matter but the U(1) gauge boson can safely live in a hidden sector,
we can reduce the observable effects of Lorentz-violations simply by increasing the gauge coupling. This
effectively hides Lorentz-violations from the gravity sector and the Standard Model, assuming no Standard
Model fields are charged under the new U(1) gauge group.

In short, we have a viable, consistent, low energy effective theory of spontaneously broken Lorentz-
invariance that reduces to ghost condensation in the limit of zero gauge coupling. For modest values
of the gauge coupling, we can raise the symmetry breaking scale as high as M = z GeV with minimal
experimental constraints. Newton’s law is slightly modified through mixing with the gauge boson and
Goldstone boson but the modification is so weak as to be virtually nonexistent. The primary constraints
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on this theory seem to come from higher dimension couplings to the Standard Model that are mediated
by graviton loops, but using naive dimensional analysis, these couplings appear very suppressed.

2 Gauged Ghost Condensation

The low energy effective Lagrangian from gauged ghost condensation arises in any theory where time
diffeomorphisms and a U(1) gauge symmetry are spontaneously broken down to a diagonal U(1) gauge
group. It is straightforward, albeit tedious, to find the quadratic piece of the Lagrangian by brute force
calculation. If we linearize the metric around flat space, gµν = ηµν+hµν , then the diffeomorphism generated
by xµ → xµ + ξµ acts on hµν to leading order as

hµν → hµν − ∂µξν − ∂νξµ, (1)

and acts on a vector field Aµ as
Aµ → Aµ − ∂µξνAν − ξν∂νAµ. (2)

A U(1) gauge symmetry acts on Aµ in the usual way

Aµ → Aµ − ∂µα, (3)

and we can generate the gauged ghost condensate Lagrangian by writing all terms invariant under the
simultaneous transformations ξµ and α = Mξ0. For example, the term (h00 − A0/M)2 is invariant to
leading order.

A simpler way to derive the gauged ghost condensate Lagrangian is to imagine a charged scalar field
getting a vacuum expectation value in a time-like direction. We can imagine this scalar field being a ghost
so fluctuations around φ = 0 are unstable. The stabilization (or condensation) of this gauged ghost field
spontaneously breaks time diffeomorphisms and the U(1) gauge symmetry down to a diagonal U(1) gauge
symmetry. While the underlying physics is really the gauge breaking pattern, we will find it convenient to
work in the scalar condensation language. This is analogous to using the language of tachyon condensation
(i.e. a Higgs field getting a non-zero vev because it has a negative mass-squared) to describe the underlying
physics of spontaneous gauge symmetry breaking.

More concretely, consider a U(1) gauge theory and a scalar field φ with mass dimension zero that
transforms under gauge transformations as

φ → φ + α, Aµ → Aµ − ∂µα. (4)

By gauge invariance, the action can only depend on Fµν and Dµφ, where

Dµφ = ∂µφ + Aµ. (5)

If the vacuum of this theory satisfies 〈Dµφ〉 = 0, then in the absence of gravity, the leading terms in the
Lagrangian take the form

L = − 1
4g2

F 2
µν +

v2

2
(Dµφ)2, (6)

and we see in unitary gauge (φ = 0) that this is the Lagrangian for a vector field of mass m = gv. We
would call the field φ the Goldstone boson of spontaneous U(1) symmetry breaking.



Gauged Ghost Condensation 4

But what if the vacuum of this theory were not 〈Dµφ〉 = 0? We might imagine that for some
(dynamical?) reason, the vacuum of the theory spontaneously broke Lorentz invariance:

〈D0φ〉 = M. (7)

Note that when we turn on gravity, this vacuum indeed breaks time diffeomorphisms and the U(1) down
to a diagonal U(1). That is, we can use time diffeomorphisms to align the time coordinate with the field
φ via φ = Mt, but only if we simultaneously make a gauge transformation such that φ = Mt is not just
pure gauge.

In analogy to the theory of ghost condensation, we can write down the generic theory that is invariant
under Lorentz invariance and gauge transformations before spontaneous symmetry breaking. (We assume
a φ → −φ symmetry.)

L = − 1
4g2

F 2
µν + M4P (X) + (∂µDµφ)2Q(X) + (∂µDνφ)2R(X) + . . . , X =

DµφDµφ

M2
. (8)

Because the Lagrangian we have written down is Lorentz-invariant, we can minimally couple gravity in
the usual way. If the vacuum really satisfies 〈D0φ〉 = M , then we expect that P will have a minimum at
X = 1,

P (X) =
1
8
(X − 1)2 + . . . , (9)

but we have no a priori reason to expect Q(X) or R(X) to have any particular functional form, and to
leading order we will take

Q(X) = −β

2
, R(X) =

γ

2
, (10)

where β and γ are expected to be O(1) coefficients.

3 Polarizations of Gauged Ghost Excitations

Before turning on gravity, we can look at the Lagrangian for φ and Aµ alone. If we go to pseudo-unitary
gauge (φ = Mt), then the vacuum of the theory satisfies 〈Aµ〉 = 0, and

X = 1 +
2A0

M
+

A2
0 −A2

i

M2
. (11)

The quadratic piece of our effective Lagrangian is thus

L = − 1
4g2

F 2
µν +

1
2
M2A2

0 −
β

2
(∂µAµ)2 +

γ

2
(∂µAν)2. (12)

Note that we can set γ = 0 by adjusting the value of β and the gauge coupling. In the limit that we
decouple gravity, Aµ represents the three polarizations of a modified U(1) gauge field (and any possible
ghost or tachyons that we haven’t forseen). Also, note that each of the terms 1

2M2A2
0 and β

2 (∂µAµ)2 are
gauge fixing terms taken alone, and we only acquire a physical Goldstone mode if both terms are taken
together.



Gauged Ghost Condensation 5

Though a bit obscure in this pseudo-unitary gauge, in the limit g → 0 we can recover our favorite
ghostone Lagrangian:

L =
1
2
π̇2 +

β − γ

2M2
(∇2π)2. (13)

To see this, reintroduce the gauge symmetry in equation (12) by making the transformation Aµ → Aµ+∂µπ,
and then take Aµ = 0 and go to canonical normalization for the π field. Note that we have dropped higher
order time derivatives in equation (13), which signal ghosts or tachyons at the scale M . This should be
expected, because our effective theory only makes sense below the scale M .

For the moment, we will stay in the pseudo-unitary gauge of equation (12) and find the propagating
degrees of freedom of the field Aµ. Later, when we are more interested in the modification of gravity, we
will use a different gauge choice, but in pseudo-unitary gauge it is easier to follow our nose and find the
polarizations without worrying about gauge fixing conditions.

Starting with equation (12), it is straightforward to derive the equation of motion for Aµ. Without
loss of generality, we will work with γ = 0. We look at plane wave solutions

Aµ = εµ(p)eip·x, (14)

where
pµ = (ω(k),~k), εµ = (ε0,~ε). (15)

The A0 equation of motion looks like

(k2 − ω2g2β + g2M2)ε0 = ω(~k · ~ε)(1− g2β), (16)

and after some simplifications, the Ai equation of motion gives

(ω2 − k2)~ε = ~k(~k · ~ε)(1− g2β)(Qω2 − 1), Q =
1− g2β

k2 − ω2g2β + g2M2
. (17)

Though we can easily solve for the polarization, it is instructive to first consider the special case
β = 1/g2. If we look at the Lagrangian in this limit

L =
1

2g2
(Aµ�Aµ) +

1
2
M2A2

0, (18)

we immediately recognize that Ai contains three healthy modes, but A0 is a ghost with mass gM , so our
theory makes sense as an effective theory up to the scale gM . For arbitrary β we expect a ghost with mass
of order M and three healthy propagating modes.

Taking ~k = (0, 0, k), the two transverse polarizations are

ε±µ = (0, 1,±i, 0) with ω2 = k2, (19)

so despite the fact we have broken Lorentz-invariance, the transverse polarizations still travel at the speed
of light. The “longitudinal” mode has

ε3µ = (ωkQ, 0, 0, 1) with ω2 =
M2 + 2k2β −M

√
M2 + 4k2β(1− g2β)
2β

' g2βk2 + (1− g2β)2β
k4

M2
+O(k6). (20)
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For g = 0, we recover the dispersion relation for the ghostone boson, but for non-zero g there is an addition
k2 piece. Note that for β > 1/g2, the “longitundinal” polarization travels faster than light and becomes
unphysical for

k2 >
M2

4β(g2β − 1)
. (21)

There is also the polarization for the ghost excitation:

εghost
µ = (ωkQ, 0, 0, 1) with ω2 =

M2 + 2k2β + M
√

M2 + 4k2β(1− g2β)
2β

' M2

β
+ (2− g2β)k2 − (1− g2β)2β

k4

M2
+O(k6). (22)

Again, note that this ghost excitation has mass of order M , so it does not affect low energy physics.

4 Mixing With Gravity

While pseudo-unitary gauge is convenient for identifying the degrees of freedom, it obscures the simple
picture for the modification of gravity due to mixing with the new gauge-ghost sector. Though we expect
mixing between Ai and the vector mode of gravity, we are interested mostly in mixing involving the scalar
mode of gravity, because the scalar mixing is related to the modification of Newton’s Law.

As shown in the original ghost condensate paper, in the non-relativistic limit and in a suitable gauge,
the Einstein-Hilbert Lagrangian can be taken to be

LEH = −M2
Pl(∇Φ)2, (23)

with
h00 = 2Φ, h0i = 0, hij = 2Φδij . (24)

We also want to focus on the scalar modes of Aµ. If we expand φ = Mt+π, then the theory in equation (8)
still has a gauge invariance under which π shifts. A general scalar excitation of Aµ can be parameterized
as

A0 = χ′, Ai = ∂iη, (25)

but performing the gauge transformation Aµ → Aµ − ∂µη, we can fix gauge and bring Aµ into the form

A0 = χ, Ai = 0. (26)

Returning to equation (8), we can minimally couple gravity in the standard way. Kinetic mixing will
only occur from terms quadratic in the fields.

L = LEH −
1

4g2
F 2

µν +
M4

8
(X − 1)2 − β

2
(∂µDµφ)2 + . . . ,

= −M2
Pl(∇Φ)2 +

1
2g2

(∇χ)2 +
M4

2

(
Φ− π̇ + χ

M

)2

− β

2
(∇2π)2, (27)
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where we have dropped terms of higher order in time derivatives which signal the breakdown of our theory
near the energy scale M . Going to canonical normalization

Φ =
Φc

MPl

√
2
, χ = gχc, π =

πc

M
, (28)

the momentum space Lagrangian is

L =
1
2

(
πc χc Φc

)  ω2 − βk4/M2 igMω −imω
−igMω k2 + g2M2 −gmM

imω −gmM −k2 + m2

  πc

χc

Φc

 , (29)

where

m =
M2

√
2MPl

. (30)

We can identify the dispersion relation for the propagating Goldstone mode by setting the determinant
of the kinetic matrix to zero.

ω2 = β

(
g2 − m2

M2

)
k2 +

βk4

M2
(31)

Immediately, we recognize that for g > m/M , the Jeans instability in this theory is removed, and we do
not expect any exponentially growing solutions around sources.

It is also straightforward invert the kinetic matrix to find the modification of the 〈ΦcΦc〉 propagator
and hence the modification to Newton’s law:

−1
k2

(
1− m2βk2

M2ω2 − βk4 − β(g2M2 −m2)k2

)
(32)

Just as in ghost condensation, to see an O(1) modification of gravity, we need to be close to on shell for
π excitations, but now that the physical π has a dispersion relation that starts as ω ∼ g

√
βk, the time it

takes to reach steady state at a distance r is roughly

t =
r

g
√

β
. (33)

While not necessary, it is certainly conceivable that g
√

β ∼ O(1) such that π waves travel at some reasonable
(subluminal) velocity. If this is the case, we can safely pass to the ω → 0 limit without worrying about time
retardation effects. In that limit, we can Fourier transform the 〈ΦcΦc〉 propagator to find the modification
to Newton’s Law:

V (r) = −G

r

1
1− ε2

(
1− ε2e−r/r0

)
(34)

where G is Newton’s constant and

ε =
m

gM
=

M√
2gMPl

, r0 =
1√

g2M2 −m2
' 1

gM

(
1 +

ε2

2
+ . . .

)
. (35)

Note that in order for this potential to make any sense (i.e. in order to assure there is no exponentially
growing mode from a Jeans instability), ε must be less than 1.
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5 Couplings to Matter

We can also imagine coupling Dµφ directly to matter. If matter is explicitly charged under the U(1), then
there are strong constraints [ref?]. In analogy to the Universal Dynamics paper, we could have a coupling

Lint =
1
F

Ψ̄γµγ5ΨDµφ. (36)

Leads to explicit L.V. term. Decoupling gravity, working in unitary gauge, and going to non-relativistic
limit:

Lint =
1
F

~s · ~A (37)

In the non-relativistic limit, we can simply set A0 = 0. (How do we know we can go to non-relativistic
limit? Because π waves travel at v = g

√
β. As long as v is fast enough...) In this limit, the 〈AiAj〉

propagator is (un-normalized)

〈AiAj〉 =
1
k2

(
g2δij − (g2 − 1/β)

kikj

k2

)
(38)

Fourier transforming to find the potential between spins ~S1 and ~S2

V (r) =
1

8πr

(
(g2 + 1/β)~S1 · ~S2 + (g2 − 1/β)(~S1 · r̂)(~S2 · r̂)

)
(39)

What about gravity with moving source? Consider the 〈ΦΦ〉 propagator with ω in the r0 → 0 limit.
r0 is a very small scale, irrelevant for GR questions.

〈ΦΦ〉 =
−1
k2

+
ε2

ω2/v2
c − k2(1− ε2)

(40)

To find moving potential set ω = ~k · ~v + iδ where δ sets pole prescription for retarded potential. If
v < vc(1− ε2) then k poles are always imaginary and we can set δ = 0. Expanding to leading order in v/vc

and ε:

〈ΦΦ〉 = − 1
k2

(
1 + ε2 + ε2

v2

v2
c

(k̂ · v̂)2
)

(41)

Fourier transforming this to find potential between sources:

V (r) = −1
r

(
1 + ε2 +

ε2

2
v2

v2
c

(
1− (r̂ · v̂)2

))
(42)

Which we compare to PPN parameters as Shinji said. Again, formula is only valid for

6 Experimental Constraints

It is clear from the form of equation (34) that for sufficiently large g, it would be very difficult to distinguish
between standard GR and a universe filled with a gauged ghost condensate. Though there is a 1/(1− ε2)
modification of Newton’s constant, our best measurements of G come from torsion balance tests of Newton’s
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Law, and because we do not have very good measurements of G from other tests of GR, we can simply
roll the 1/(1 − ε2) modification into a redefinition of G. Also note that there it would be challenging to
measure the Yukawa-like e−r/r0 modification because it is strongest at length scales r < 1/gM , but this
corresponds to k > gM which is generically outside the range of validity of our effective theory.

The strongest constraints on this theory seem to come from looking at couplings to the Standard
Model that are generated through graviton loops. Given a dimension four standard model operator Oµν

there is no symmetry forbidding us from writing down the interaction

Lint =
M2

M4
Pl

OµνDµφDνφ, (43)

where the factor 1/M4
Pl is the naive suppression factor for a dimension 8 operator in an effective field

theory with a Planck scale cutoff, and the factor of M2 accounts for the fact that in our conventions, φ
has dimension zero. When Dµφ takes its vev, we are left with the operator

Lint =
M4

M4
Pl

O00. (44)

One interesting candidate for Oµν is the stress-energy tensor Tµν . Adding a term T 00 modifies the maximum
attainable velocity for various particles, and it can be shown that this places a bound M < 10w GeV. In
the case of the original ghost condensate, this bound was trivial compared to the constraints imposed by
gravity, but in the gauged ghost condensate, this bound is (apparently) the only guaranteed bound on the
scale M if we are free to push g to be much larger than M/MPl ∼ 10r.

Of course, we could certainly imagine other couplings to Dµφ. For example, if we relax the assumption
of a φ → −φ symmetry, then we could have a coupling to, say, the electromagnetic current:

Lint =
M

F
JµDµφ, (45)

where F is some unknown mass scale. In the case of the ungauged ghost condensate, we could phase away
this interaction via a field redefinition of the fermions Ψ (Jµ = Ψ̄γµΨ), but now there is no way to phase
away the piece of the coupling

Lint =
M

F
JµAµ. (46)

Though this looks like the standard electromagnetic interaction, we have to remember that even in the
absence of gravity, A0 mixes with the Goldstone boson. This modifies the 〈A0A0〉 propagator from 1/k2

to 1/(k2 + g2M2), but it does not substantially modify the 〈AiAi〉 propagator. This yields an additional
Yukawa-like interaction between electric charges but an additional undamped interaction between electric
currents. Therefore, at distances larger than 1/gM , one would observe that the effective αEM for charge-
charge interactions would differ from the effective αEM for current-current interactions by (M/F )2. Given
the amazingly precise measurements of αEM in a wide range of experiments, we expect stringent bounds
on this direct coupling.

7 Prospects

We have seen that by charging our ghost scalar under a U(1) gauge symmetry, we have given ourselves new
freedom to adjust the modification of gravity due to ghost condensation. For values of the gauge coupling
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larger than M/MPl, we not only remove the Jeans instability, but we also end up with modification of
Newton’s Law that might as well not be a modification at all. Whether this is an improvement or not
depends on whether we think signals of Lorentz-violation will appear in gravitational physics.

At the very least, we have shown that it is possible to have spontaneous Lorentz-violations at very
high energies. It should come as no surprise to anyone that we are only able to do this by spontaneously
breaking Lorentz-invariance in a hidden sector. Still, we know that gravity couples universally, so it is a
bit bizarre that gravity is only softly modified if the gauge coupling is large enough. As mentioned already,
qualitatively we can think of the Goldstone boson as being “less eaten” by the graviton as we increase the
gauge coupling. Alternatively, we can think in terms of adjusting the “mixing angle” of the unbroken U(1)
gauge symmetry such that the unbroken U(1) is mostly time diffeomorphisms.

To really understand whether gauged ghost condensation is truly a viable alternative to ungauged
ghost condensation, we need to more thoroughly understand all the experimental limits. While it appears
that we are safe even with a symmetry breaking scale as high as M = 10w GeV, there may be other effects
that we aren’t considering. Also, it is essential that we understand whether the gauged ghost condensate
looks at all like cold dark matter and whether there might be an inflation scenario based on a gauged ghost
field.

We could also consider more complicated symmetry breaking patterns that still preserve SO(3) in-
variance. For example, we could consider space diffeomorphisms and an SU(2) gauge group being spon-
taneously broken to a diagonal SU(2), and this diagonal SU(2) might even confine. While it is not clear
whether such a theory is well-behaved, it may be worthwhile to catalog all possible Lorentz-breaking
patterns to understand the range of consistent infrared modifications of gravity.
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