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A Unhealthy Modifications to Gravity

The theories of ghost condensation and gauged ghost condensation suggest a new route for trying to find
modifications of gravity. In both cases, the low energy effective Lagrangian can be obtained by considering
the most general Lagrangian consistent with whichever unbroken gauge symmetries remain. This suggests
that we could construct a whole class of modifications of gravity simply by postulating some reduced
diffeomorphism symmetry and finding general Lagrangians consistent with the unbroken diffeomorphisms.

In this appendix, we show two examples where this reasoning leads to unhealthy (but Lorentz-
invariant) modifications of gravity. In both cases, we can make choices to reduce the theory to (healthy)
scalar-tensor theories. However, these choices simply amount to eliminating any couplings between mani-
festly sick modes and external sources. Despite the fact that these theories are sick, they serve to remind
us that by breaking diffeomorphisms, we are simply introducing new degrees of freedom. Whether these
new degrees of freedom are interesting or not depends on the specifics of the breaking pattern. In the
case of ghost condensation or gauged ghost condensation we find a fascinating Goldstone mode with a
Lorentz-violating dispersion relation. In the two examples in this appendix, we find nothing but violations
of unitarity.

How many ways can we break diffeomorphisms in a Lorentz-invariant way? An arbitrary diffeomor-
phism ξµ can be decomposed into its “longitudinal” and “transverse” pieces:

ξµ = ∂µθ + ξ̂µ, ∂µξ̂
µ = 0. (1)

The case of breaking all diffeomorphisms corresponds to massive gravity (see [ref?]). Clearly, we can also
separately break longitudinal or transverse diffeomorphism. Under θ and ξ̂µ, the symmetric tensor hµν

transforms as:

hµν → hµν − 2∂µ∂νθ,

hµν → hµν − ∂µξ̂ν − ∂ν ξ̂µ. (2)

The two examples in this appendix are the two Lorentz-invariant possibilities of breaking θ or breaking ξ̂.
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A.1 One New Degree of Freedom

We will start with the case of breaking longitudinal diffeomorphisms θ. In that case, we expect one new
scalar degree of freedom. The leading two-derivative quadratic Lagrangian we can write down for hµν

consistent with ξ̂µ is:

L = M2
Pl

(
√
gR+ βεhR+

ε2

2
(∂µh)2 −

ε2m2

2
h2

)
+ hµνT

µν , (3)

where β, ε, and m2 are arbitrary parameters, h = hµ
µ, and to leading order

√
gR =

1
2
(∂ωhµν)2 + (∂µh)(∂νhµν)−

1
2
(∂µh)2 − (∂νhµν)2,

R = ∂µ∂νhµν −�h. (4)

Note that in order for the source term hµνT
µν to be invariant under the remaining transverse diffeomor-

phisms, Tµν must satisfy (up to total derivatives)

ξ̂µ∂νT
µν = 0 =⇒ ∂ν

(
Tµν − 1

�
∂ω∂

µT νω

)
= 0. (5)

Here we have used the fact that we can formally write ξ̂µ as ξµ − 1
�∂µ(∂ · ξ).

To isolate the new degree of freedom, we can perform the broken θ diffeomorphism and promote it to
a field ϕ.

L = M2
Pl

(
√
gR+ βε(h+ 2�ϕ)R+

ε2

2
(∂µh+ 2∂µ�ϕ)2 − m2ε2

2
(h+ 2�ϕ)2

)
+ (hµν + 2∂µ∂νϕ)Tµν . (6)

Already, this theory looks peculiar because there is no normal (∂µϕ)2 kinetic term. To make the physics
more transparent, we can make a field redefinition on ϕ:

ϕ̃ = ε(h+ 2�ϕ). (7)

The Lagrangian in terms of ϕ is

L = M2
Pl

(
√
gR+ βϕ̃R+

1
2
(∂µϕ̃)2 − m2

2
ϕ̃2

)
+ hµν T̃

µν +
1
ε
ϕ̃χ, (8)

where
χ =

1
�
∂µ∂νT

µν , T̃µν = Tµν − ηµνχ. (9)

For ε2 > 0 and m2 > 0, this looks like a theory of a scalar ϕ̃ with a healthy kinetic term coupled to gravity
with sources. Note that by equation (5), ∂µT̃

µν = 0, so hµν couples to a conserved current as demanded
by full diffeomorphism invariance.

However, the sources χ and T̃µν are manifestly non-local, so a local source Tµν will generate unbounded
energy configurations in hµν and ϕ. We can cure these instabilities by forcing ∂µT

µν = 0, but then the
theory simply reduces to a scalar-tensor theory of gravity.
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A.2 Three New Degrees of Freedom

We now turn to the case of breaking transverse diffeomorphisms ξ̂. In that case we expect three new
propagating degrees of freedom. Again, we will see that we can write the Lagrangian in terms of fields
with normal kinetic terms, but only if we have non-local sources. The leading Lagrangian consistent with
the unbroken θ diffeomorphism is

L = M2
Pl

(
√
gR− α2

2
(∂νhµν − ∂µh)2

)
+ hµνT

µν . (10)

In order for the source term hµνT
µν to be invariant under the remaining longitudinal diffeomorphisms, Tµν

must satisfy
∂µ∂νT

µν = 0. (11)

To isolate the new degrees of freedom, we perform the broken diffeomorphism ξ̂µ and promote it to a field
Âµ with the constraint ∂µÂµ = 0. Equivalently, we can take

Âµ ≡ Aµ −
1
�
∂µ(∂ ·A). (12)

In terms of Aµ the Lagrangian is

L = M2
Pl

(
√
gR− α2

2
(ψµ + �Aµ − ∂µ(d ·A))2

)
+ (hµν + ∂µAν + ∂νAµ)Tµν , (13)

where we have used the conservation condition in equation (11), and

ψµ = ∂νhµν − ∂µh, ∂µψµ = R. (14)

While it is possible to do field redefinitions to write this Lagrangian in a more transparent way, a
simpler method to understand the physics is to simply integrate out the field Aµ. The Aµ equation of
motion is

M2
Plα

2

(
ψµ + �Aµ − ∂µ(d ·A)− 1

�
∂µR

)
+

1
�
∂νT

µν = 0. (15)

Integrating out Aµ from equation (13):

L = M2
Pl

(
√
gR+

α2

2
R

1
�
R

)
+ hµν T̃

µν +
2

M2
Plα

2
Jµ
ηµν

�2
Jν , (16)

where
T̃µν = Tµν − 1

�
∂µJν − 1

�
∂νJµ, Jµ = ∂νT

µν . (17)

Note that ∂µJ
µ = 0, so hµν couples to a conserved current. We can equivalently write this Lagrangian in

terms of new fields ϕ̃ and Ãµ:

L = M2
Pl

(
√
gR+ αϕ̃R+

1
2
(∂µϕ̃)2 − 1

4g2
F̃µνF̃

µν

)
+ hµν T̃

µν + Ãµ
1√
−�

Jµ, (18)

where g = 2/α and F̃µν is the Faraday tensor for Ãµ. Obviously, equation (16) can be obtained from
equation (18) by integrating out ϕ̃ and Ãµ. Also, it is clear we need α2 > 0 and we need to include
appropriate gauge fixings for both hµν and Ãµ.
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This theory has some remarkable features, including a relation between the gauge coupling g = 2/α
and the ϕ̃R coupling α that is guaranteed by the original θ diffeomorphism symmetry. However, we see
that hµν and Ãµ both couple to non-local currents, and therefore this theory has drastic instabilities. If
we made the choice ∂µJ

µ = 0, then these instabilities would be cured, but we would be left simply with a
scalar-tensor theory with a decoupled massless spin-1 field.

A.3 What Went Wrong

In the case of massive gravity, we break all diffeomorphism symmetry but at tree level we only allow the
inclusion of mass terms for hµν and not new two-derivative kinetic terms. In the first example we saw,
the residual transverse diffeomorphism symmetry only allowed an h2 mass term, but that term alone only
partial gauge-fixes to traceless gauge. In the second example, the residual longitudinal diffeomorphism
forbid any mass term, so the only way to get any modification of gravity in these examples was to modify
the

√
gR kinetic terms. But by modifying the two-derivative pieces, we saw that the new modes have

couplings to non-local sources.

The general Lorentz-invariant propagator for a symmetric tensor field hµν when there are no mass
terms or new physical scales is

∆αβµν(p) =
1
p2

(
λ1η

αµηβν + λ2η
αβηµν + λ3η

αβ p
µpν

p2
+ λ4η

αµ p
βpν

p2
+ λ5

pαpβpµpν

p4
+ sym.

)
, (19)

where we symmetrize α ↔ β, µ ↔ ν, and αβ ↔ µν. If hµν couples to a source that does not satisfy
∂µT

µν = 0, then the dangerous 1/p4 and 1/p6 poles in the propagator are not protected, and the theory
propagates ghost modes. Classically, a point source sets up a hµν field that grows as r or r3, and the
essential assumption that fields die off at the boundary of space-time fails.

Therefore, without mass terms (and assuming Lorentz-invariance) the only allowed modifications of
gravity are ones where energy-momentum tensors are still conserved but λ1 and λ2 are modified from their
GR values λ1 = +1/2 and λ2 = −1/2 (of course the other λi can also change, but this won’t change any
of the physics). Modifying λ1 just amounts to rescaling fields. Modifying λ2 effectively mixes hµν with a
new scalar mode, so the only massless, Lorentz-invariant modification of gravity is scalar-tensor theory. Of
course, current experimental bounds suggest that λ1 and λ2 are very close to their GR values, and while
scalar-tensor theory is not excluded, the coupling of the scalar to R must be very weak.

What massive gravity, ghost condensation, gauged ghost condensation, DGP gravity, etc. tell us is
that if we include 4D effective mass terms or break Lorentz-invariance, we can safely modify gravity over
some energy range. In all these known cases, the low energy 4D description needs a UV completion below
MPl. The two examples in this appendix simply emphasize that ghost condensation and gauged ghost
condensation are special cases where simplying reducing the diffeomorphism symmetry gives generically
healthy theories over some energy range.
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B Gauge Fixing Gravity

In the course of looking at these examples, I discovered something that is probably well-known but I’ve
never seen before. One might ask, what are all the valid Lorentz-invariance gauge fixings for gravity that
don’t introduce new mass scales? Looking at equation (19), we see that a gauge fixing that touches λ5

must have a (∂µ∂νh
µν)2 term, but by dimensional analysis, the coefficient of this term must be zero or

infinity in order for this term to not introduce a new scale.

The general Lagrangian we will consider is

L = A(∂ωhµν)2 +B(∂µh)(∂νhµν) + C(∂µh)2 +D(∂νhµν)2 + E(∂µ∂νh
µν)2. (20)

The (un-gauge-fixed) GR values are

A =
1
2
, B = 1, C = −1

2
, D = −1, E = 0. (21)

We want to find all values of A, B, C, and D (with E = 0 or ∞) such that the propagator in equation (19)
still has λ1 = 1/2, λ2 = −1/2 and the other λi are finite. To find the propagator, we write the Lagrangian
in equation (20) as

L = −1
2
hαβM

αβµνhµν (22)

where Mαβµν is appropriately symmetrized. The propagator is then the solution (in momentum space) of

Mαβµν∆µνρσ = δρ
αδ

σ
β . (23)

Here are the only possibilities:

E = 0 : A =
1
2
, B = 1− 2η

ξ
, C = −1

2
+
η2

ξ
, D = −1 +

1
ξ

=⇒ LGF =
1
ξ
(∂νhµν − η∂µh)2, ξ 6=∞, η 6= 1. (24)

And...
E =∞ : A =

1
2
, B = 1 + η, C = −1

2
, D = −1 +

1
ξ

=⇒ LGF =
1
ξ
(∂νhµν)2 + η(∂µh)(∂νhµν) +∞(∂µ∂νh

µν)2, ξ 6=∞, η can be anything. (25)

Well there it is, for what its worth.


