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1 An Opportunity to Explore Self-Consistency

The theory of ghost condensation [1] has been introduced as a consistent IR modification of gravity, valid
up to an energy scale M . Though not necessary, the ghost condensate can couple directly to Standard
Model fermions, and recently we have explored some of the classical, non-relativistic dynamics coming from
ghost/SM interactions [2]. Because the ghost condensate has a self-consistent low energy description, we
expect that S-matrix elements involving the scattering of ghost condensate excitations (hereafter called π
fields) should be unitary. But because the π field has an unusual ω ∼ k2/M dispersion relation, we should
also check that the cross-sections we obtain for processes involving π-ons are well-behaved.

This is not as trivial an exercise as it might sound. The cross-section involves an integral over phase
space for the external states, and because the π field violates Lorentz invariance, we cannot use the Lorentz
invariant phase space. We can find the correct phase space either by feigning näıveté or appealing to the
optical theorem, and when we try to calculate the center-of-mass two-particle phase space for a π-on and
a normal particle of mass m, we will find that the phase space diverges as 1/

√
Ecm −m as Ecm approaches

m. This should be contrasted with the case of the two-particle phase space for a photon and an electron
which goes linearly to zero as the center-of-mass energy approaches me.

There are many ways that this problem might be averted. In particular the π field couples like a
Goldstone boson, and we might expect that the added derivative interactions could compensate for the
divergent phase space in the expression for the cross-section. Unfortunately, this turns out not to be the
case. Also, we note that for any reasonable system, the center-of-mass energy is never that close to a
mass threshold. In particular, for e−γ → e−π (a pseudo-Compton scattering event), the photon always
has some energy, so Ecm is strictly greater than me. However, the ωphoton → 0 limit of normal Compton
scattering does have a meaningful interpretation, and it is worrisome that the same cannot be said of the
pseudo-Compton effect.

In this talk, we will show that cross-sections involving π-ons are in fact well-behaved. We will accom-
plish this not by some theoretical trick or an arbitrary IR cut-off, but rather by appealing to the theory
of ghost condensation itself. In particular, in order to add a direct coupling between the π field and Stan-
dard Model fermions, you have to modify the dispersion relations for those fermions. When we take into
account this modified dispersion relation, we will find that the two-particle center-of-mass phase space for
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a π-on and an electron is not divergent, and that the cross-section for, say, pseudo-Compton scattering is
well-behaved.

Let us emphasize just how important this point is. One might think that there was no difficulty
considering a scalar field φ that happened to have a Lorentz-violating ω ∼ k2/M dispersion relation. Up
to a scale M , this theory looks like a perfectly sensible effective field theory. In order to guarantee that
the φ field was exactly massless, we would have to introduce a shift symmetry φ → φ + c, so φ has to be
derivatively coupled to SM fields. (If the φ field were not derivatively coupled and the φ field did have
a mass, then the ωphoton → 0 limit of pseudo-Compton scattering would not be kinematically allowed,
and the divergent phase space issue would be resolved.) If we then tried calculating the cross-section for
pseudo-Compton scattering with the φ field, we would find that it diverged as the incoming photon became
softer and softer, and we might be led to the conclusion that either the electron or the photon dispersion
relation has to be modified. In our case, residual space diffeomorphism symmetry [3] tells us exactly how
the electron dispersion relation has to be modified and naturally introduces an “IR cutoff” for our theory.

2 One Particle Phase Space for the Ghost Condensate

For a relativistic particle of mass m, the one particle phase space is∫
dΠ1 =

∫
dω d3k

(2π)4
(2π)δ(ω2 − k2 −m2)θ(ω). (1)

It is easy to check that this phase space (including the θ function) is invariant under Lorentz transforms.
Performing the ω integral, ∫

dΠ1 =
∫

d3k

(2π)3
1

2Em(k)
(2)

where Em(k) =
√

k2 + m2. This is the familiar Lorentz-invariant phase space for a particle of mass m.

We might then guess (correctly) that the one-particle phase space for a π-on is∫
dΠπ

1 =
∫

dω d3k

(2π)4
(2π)δ

(
ω2 − k4

M2

)
θ(ω) =

∫
d3k

(2π)3
1

2Eπ(k)
, (3)

where Eπ(k) = k2/M . Clearly this expression imposes the on-shell condition, but why didn’t we choose
the argument of the delta function to be simply (ω − k2/M) or have additional weighting factors in the
integral? There are two reasons. First, the factor of 1/2Em in the relativistic one particle phase space
comes from normalizing external states in the expression for the cross-section. This has everything to do
with the on-shell condition for the external particle and nothing to do with Lorentz invariance, therefore
it should carry over to the π-on case. Second, by the optical theorem, we want the imaginary part of the
forward scattering amplitude to be related to the total cross section, and by the Cutkosky rules, the only
place we can get imaginary parts for amplitudes is from propagators. If we cut an internal π-on line, we
get an imaginary part

Im
1

ω2 − k4/M2 + iε
∼ δ

(
ω2 − k4

M2

)
. (4)
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This is precisely the phase space “weighting” we expected, modulo the θ(ω) factor which we could extract
in principle if we were more careful.

Note that because the π-on phase space is not Lorentz invariant, the expression in equation (3) is only
valid in the ether rest frame. Performing a boost along the ẑ direction

ω → ω + vkz√
1− v2

, kx → kx, ky → ky, kz →
kz + vω√

1− v2
. (5)

The phase space becomes (with corrections at order v2)∫
dΠπ

1 =
∫

dω d3k

(2π)4
(2π)δ

(
ω2 − k4

M2
+ 2vkzω

(
1− 2k2

M2

))
θ(ω + vkz). (6)

Note that a physical state that satisfied the positive energy condition in the ether rest frame might have
negative energy in the boosted frame. Whether it is easier to do calculations in the ether rest frame or the
center-of-mass frame is a matter of taste, but rarely would terrestrial experiments occur in the ether rest
frame. In particular, if the CMB rest frame is the ether rest frame, then typically v ∼ 10−3 and we are
justified in ignoring terms at order v2.

3 Näıve Two Particle Phase Space For Electrons and π-ons

To find the two particle phase space for an electron and a π-on, we merely multiply the two one-particle
phase spaces together with an energy-momentum conserving delta function. We will work in the idealized
case that the center-of-mass frame is the same as the ether rest frame, though a similar analysis holds for
non-zero (but small) v.

The two particle center-of-mass phase space is∫
dΠ2 =

∫
d3p

(2π)3
1

2Em(p)
d3k

(2π)3
1

2Eπ(k)
(2π)3δ(3)(~p + ~k) (2π)δ (Ecm − Em(p)− Eπ(k)) . (7)

Performing all of the integrals expect the angular integral of k:∫
dΠ2 =

∫
dΩ

16π2

M2

k∗ (M + 2Em(k∗))
, (8)

where k∗ is the positive solution to Ecm = Em(−k) + Eπ(k). This result should be compared to the result
for the two particle phase space for relativistic particles:∫

dΠLI
2 =

∫
dΩ

16π2

k∗
Ecm

, Ecm = Em1(−k∗) + Em2(k∗). (9)

Unlike the relativistic case, the phase space in equation (8) diverges as k∗ goes to zero. In particular,

k∗ ∼
√

2mM

2m + M

√
Ecm −m (10)

for Ecm close to m.
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Of course, just because the phase space diverges, this does not necessarily mean that cross sections
diverge. In particular, the π field couples as a Goldstone boson, so the leading (non-relativistic) coupling
to a Standard Model fermion such as the electron is [3]

Lint =
1
F

Ψ̄γ5~γΨ · ~∇π. (11)

If k is the magnitude of the spacial momentum for the π-on in the case of pseudo-Compton scattering
(e−γ → e−π), then the amplitude goes at best (i.e. most convergent for small k) as

M∼ k

F
. (12)

The expression for the cross section is

σcm =
1

2EA2EB|vA − vB|

∫
dΠ2 |M|2, (13)

where EA is the energy of the initial photon, EB is the energy of the initial electron, and |vA − vB| is the
relative velocities of the two initial particles in the center-of-mass frame. In the limit of Ecm near me,

EA ∼ k2
∗
2me + M

2meM
, EB ∼ me, |vA − vB| ∼ 1, (14)

so we see readily that the cross section is at least as divergent as

σcm ∼
1
k2
∗

∫
dΩ

1
k∗
|k∗|2 ∼

1
k∗

. (15)

The only way that this could be zero is if the angular integral over the phase space were zero, but this
is not the case. Also, this result is robust to introducing a small “ether wind” velocity v. In fact, if we
actually do the calculation we see that the divergence is worse than our optimistic guess.

σcm ∼
e2

F 2

M5m2
e

(2me + M)4
1
k3
∗

(Ecm → me) (16)

Thankfully, in the limit that me = 0, the cross section is zero as we would expect, because the interaction
in equation (11) can be removed by a field redefinition when there is an additional axial U(1) symmetry
on the electron field.

4 What Went Wrong?

We have a situation with an (unphysical) IR divergence, and one might first think that this is the same
IR divergence that occurs with any massless field. In loop calculations in QED, some amplitudes have IR
divergences that can be cured by considering processes with arbitrarily soft external photons. The soft
photons can be thought of as representing the Coulomb field of the asymptotic electron or as photons that
are below the energy threshold of experimental detectors.

Here, however, the amplitude of pseudo-Compton scattering is not IR divergent. In fact, it takes on
a finite value as k∗ goes to zero. Our problem stems from the divergence in the phase space and in the
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cross-section pre-factors, not from the amplitude. There are two likely possibilities: either something went
wrong in our analysis, or it is inconsistent to couple a relativistic fermion to the π field.

I argue that the second possibility is more likely for the simple reason that the theory of ghost
condensation predicts that a coupling to the fermion axial current must be joined by a modification to the
Dirac equation for the electron. In particular, by looking at the constraints coming from residual space
diffeomorphisms [3], the modification to the electron Lagrangian must be

∆L =
1
F

Ψ̄γ5~γΨ · ~∇π + µΨ̄γ0γ5Ψ, (17)

where µ = M2/F . We see that this leads to the modified Dirac equation

(p/−m + µγ0γ5)Ψ(p) = 0, (18)

so we have no reason to expect that electrons will continue to have a relativistic ω =
√

k2 + m2 dispersion
relation. In particular, our new dispersion relation is

ω =
√

(|~p | ± µ)2 + m2
e, (19)

where roughly speaking, the plus sign is for left-handed electrons and positrons and the minus sign is for
right-handed electrons and positrons.

5 Revised Two Particle Phase Space For Electrons and π-ons

We can use this dispersion relation to recalculate the two particle phase space. To start, we will focus on
the plus sign case of equation (19). The analysis for the minus sign case is similar, but because |p| = 0
does not represent the lowest energy state of the fermion, the analysis is slightly altered.

Following equation (7), the two particle phase space is∫
dΠ2 =

∫
d3p

(2π)3
1

2Ẽm(p)
d3k

(2π)3
1

2Eπ(k)
(2π)3δ(3)(~p + ~k) (2π)δ

(
Ecm − Ẽm(p)− Eπ(k)

)
, (20)

where Ẽm(p) =
√

(|~p |+ µ)2 + m2
e. Evaluating all of the integrals expect the angular k integral:∫
dΠ2 =

∫
dΩ

16π2

M2

(k∗ + µ)M + 2k∗Ẽm(k∗)
, (21)

where k∗ is the positive solution to Ecm − Ẽm(−k) − Eπ(k) = 0. We now see that the expression in the
denominator is strictly non-zero for all k∗, so there are no divergences in the two particle phase space.
Indeed, we needed an IR cutoff, and the parameter µ provides that cutoff.

The same is true for when µ → −µ, but the IR cutoff argument is not quite so manifest. The
denominator of the phase space integral is now

(k∗ − µ)M + 2k∗Ĕm(k∗), Ĕm(k) =
√

(|~p | − µ)2 + m2
e. (22)
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If Ecm >
√

m2
e + µ2, then k∗ is single-valued, and the denominator is strictly positive. There is a critical

energy Ecritical which is the smallest allowed value of Ĕm(−k)+Eπ(k). At Ecritical, the phase space diverges
linearly with k∗. For the case that Ecritical < Ecm <

√
m2

e + µ2, k∗ is multi-valued but the denominator
is strictly non-zero. (For multi-valued k∗, you can check that the phase space is the sum of the absolute
values of the various integrands, so the fact that the denominator goes negative is not a problem.)

All we need to check is that for any realistic scattering, Ecm > Ecritical. In the case of pseudo-Compton
scattering with a incoming photon of energy ω, the center-of-mass energy is

Ecm = ω +
√

(ω ± µ)2 + m2
e. (23)

For the plus sign case (corresponding to an incoming left-handed electron), Ecm is bounded below by√
m2

e + µ2, which is greater than Ecritical. For the minus sign case (corresponding to an incoming right-
handed electron), Ecm is also bounded below by

√
m2

e + µ2 if me is strictly greater than zero. And if
me were exactly zero, then the axial U(1) rephasing would allow us to remove the coupling between the
electron and the π field. So in all cases, the phase space is finite (albeit large) for small Ecm.

Now we can look at the cross-section for pseudo-Compton scattering to see whether the µ parameter
makes it well behaved. Unfortunately, this is easier said than done. Because of the modification to the
quadratic piece of the Lagrangian, the new electron propagator is

(
k/−m + µγ0γ5

)−1 =
k/ + m + µγ0γ5

2

 1 +
~k·~γ
|~k|

γ0γ5

ω2 − (|~k|+ µ)2 −m2
+

1− ~k·~γ
|~k|

γ0γ5

ω2 − (|~k| − µ)2 −m2

 , (24)

where k = (ω,~k). For the electron, there are two polarizations, but each has a different dispersion relation,
so it is usually inconvenient to use the sum-over-polarization trick. To find the wave functions it is necessary
to use the helicity basis to define spinors

~p · ~σ ξ±(p) = ±ξ±(p), (25)

where the normalization condition is ξ†ξ = 1. The wave functions and normalizations for the various
helicity states are summarized in the following table.

On-shell condition Wave function u(k)ū(k) or v(k)v̄(k)

e−L ω2 = (|~k|2 + µ)2 + m2 uL(k) =
(

+
√

k · σ + µ ξ−(k)
+
√

k · σ̄ − µ ξ−(k)

)
k/+m+µγ0γ5

2

(
1 +

~k·~γ
|~k|

γ0γ5
)

e+
R ω2 = (|~k|2 − µ)2 + m2 vR(k) =

(
+
√

k · σ − µ ξ−(k)
−
√

k · σ̄ + µ ξ−(k)

)
k/−m−µγ0γ5

2

(
1 +

~k·~γ
|~k|

γ0γ5
)

e−R ω2 = (|~k|2 − µ)2 + m2 uR(k) =
(

+
√

k · σ + µ ξ+(k)
+
√

k · σ̄ − µ ξ+(k)

)
k/+m+µγ0γ5

2

(
1− ~k·~γ

|~k|
γ0γ5

)
e+
L ω2 = (|~k|2 + µ)2 + m2 vL(k) =

(
+
√

k · σ − µ ξ+(k)
−
√

k · σ̄ + µ ξ+(k)

)
k/−m−µγ0γ5

2

(
1− ~k·~γ

|~k|
γ0γ5

)
(26)

In principle, the calculation is straight-forward and may be carried out at a later date. Our expectation
is that the amplitude for pseudo-Compton scattering is well-behaved, and that the expression for the total
cross-section is also well-behaved. (You might worry that we might have the same situation as in equation
(16), where the divergence is worse than expected. Though we cannot rule out that possibility, it seems
highly unlikely. Also, we may have made a calculational error in equation (16), such that the näıve
expectation is actually correct.)
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6 Prospects

We have seen in a very simple case that the couplings between the Standard Model and the π field of the
form

∆L =
1
F

Ψ̄γ5~γΨ · ~∇π + µΨ̄γ0γ5Ψ (27)

are intimately linked. For consistency reasons, we cannot ignore the modification to the fermion dispersion
relation when calculating scattering cross-sections involving π-ons. It would be amusing (though unlikely)
to find the reverse case, where a modified fermion dispersion relation forced a couplings to some pseudo-
scalar with a ω ∼ k2/M dispersion relation. In the theory of ghost condensation, the two effects are
inseparable because of residual space diffeomorphisms, so there is a natural explanation for why they come
paired.

There are other effects involving π-ons that have a similar pairing. It is possible (in fact, necessary
because of graviton loops) to couple π to the electron momentum density, in which case you also have to
change the speed of light (i.e. maximum attainable velocity) of the fermions. It would be interesting to see
whether such couplings have a natural pairing in terms of insuring finite cross-sections. If nothing else, it
is interesting to see the difficulties in doing calculations involving non-relativistic fields within a relativistic
framework.
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