Universal Dynamics of Spontaneous Lorentz-Violation and a New Spin-Dependent Inverse-Square Law Force

Jesse Thaler

N. Arkani-Hamed, H.-C. Cheng, and M. Luty

hep-ph/0407034

Question: What if the vacuum state of the universe is not Lorentz-invariant?

Answer (Without Gravity): Write down an effective theory with non-zero vevs for various tensor operators.

$$\mathcal{L}_{\text{CPT-odd}} = b_0 \bar{\Psi} \gamma^0 \gamma^5 \Psi$$

Colladay and Kostelecký: hep-ph/9809521

Goal: Measure the spurion b_0 .

Experiment: Electrons with $v \sim 10^{-3}$:

$$b_0 < 10^{-25} \text{ GeV}$$

Heckel, et. al. EotWash, 1999.

Answer (With Gravity): Forced to introduce new propagating degree of freedom!

The Goldstone Boson of Spontaneous Lorentz-Violation

Key Point: For every spurion there is a new dynamical effect mediated by the Goldstone.

Complementary tests for Lorentz-violations!

Goldstone Boson

Lorentz-Violating Dispersion Relation:

$$\pi: \quad \omega^2 = \frac{k^4}{M^2}$$

Leading Coupling to SM:

$$\mathcal{L}_{\text{int}} = \frac{1}{F} \left(M^2 \bar{\Psi} \gamma^0 \gamma^5 \Psi - \bar{\Psi} \vec{\gamma} \gamma^5 \Psi \cdot \vec{\nabla} \pi \right)$$

Two New Dynamical Effects!

"Ether" Cherenkov Radation
Long-Range Spin-Dependent Force

Ether Cherenkov Radiation

Velocity of Goldstone excitations is $v \sim k/M$. Always a k mode such moving particle is traveling faster than it. Goldstone shockwave!

Note: Sometimes, effective theory breaks down before experimental bound.

Long-Range Spin-Spin Force

Massless bosons \Longrightarrow long-range forces.

Normally: $1/r^3$ spin-spin potential.

Goldstone: 1/r spin-spin potential!

Spurion bounds \Longrightarrow some dynamical bounds

Why Does Gravity Matter?

Diffeomorphisms: $x^{\mu} \to x^{\mu} + \xi^{\mu}(x)$

 $g_{\mu\nu}$ (10 d.o.f.) \Longrightarrow Graviton (2 modes)

$$\Delta \mathcal{L} = J^0$$

No way to covariantize with $g_{\mu\nu}$!

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$h_{\mu\nu} \rightarrow h_{\mu\nu} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu} + \dots$$

 $J^{0} \rightarrow J^{0} - J^{\mu}\partial_{\mu}\xi^{0} - \xi^{\mu}\partial_{\mu}J^{0} + \dots$

Broken Diffeo: No conceptual problem. Just new polarizations for graviton.

Stückelberg Trick

Introduce field that shifts under ξ^0 :

$$\pi \to \pi - \xi^0$$

Goldstone Boson of Time Diffeomorphism Breaking (and Lorentz-Violation)

$$h_{\mu\nu} \rightarrow h_{\mu\nu} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu}$$

$$J^{0} \rightarrow J^{0} - J^{\mu}\partial_{\mu}\xi^{0} - \xi^{\mu}\partial_{\mu}J^{0}$$

Covariant combination involving J^0 and π to leading order $(M_{\rm Pl} \to \infty)$:

$$\mathcal{L}_{\rm int} = J^0 - J^\mu \partial_\mu \pi$$

Arkani-Hamed, Cheng, Luty, Mukohyama: hep-th/0312099

Standard Model Couplings

Equivalently: $\phi \rightarrow \phi + c$

$$\langle \partial_{\mu} \phi \rangle = M^2 \delta_{\mu}^0 \qquad \phi = M^2 t - \pi$$

$$\mathcal{L}_{\rm int} = \frac{1}{F} J^{\mu} \partial_{\mu} \phi \implies \frac{M^2}{F} J^0 - \frac{1}{F} J^{\mu} \partial_{\mu} \pi$$

Leading coupling: $J^{\mu} = \bar{\Psi} \gamma^{\mu} \gamma^5 \Psi$

Non-relativistic limit:

$$\mathcal{L}_{\text{int}} = \frac{M^2}{F} \bar{\Psi} \gamma^0 \gamma^5 \Psi + \frac{1}{F} \vec{s} \cdot \vec{\nabla} \pi$$

New derivative coupling to spin density!

Experimental Bound: $M^2/F < 10^{-25} \text{ GeV}$

Kinetic Term for Goldstone

$$h_{00} \rightarrow h_{00} - 2\partial_0 \xi_0$$

$$h_{0i} \rightarrow h_{0i} - \partial_0 \xi_i - \partial_i \xi_0$$

$$h_{ij} \rightarrow h_{ij} - \partial_i \xi_j - \partial_j \xi_i$$

$$\pi \rightarrow \pi - \xi_0$$

Can we covariantize $\dot{\pi}^2$?

$$M^4 \left(\dot{\pi} - \frac{1}{2}h_{00}\right)^2$$

What about $(\nabla \pi)^2$?

$$\delta(\partial_i \pi - h_{0i}) \to -\partial_0 \xi_i$$

Kinetic Term for Goldstone

$$h_{00} \rightarrow h_{00} - 2\partial_0 \xi_0$$

$$h_{0i} \rightarrow h_{0i} - \partial_0 \xi_i - \partial_i \xi_0$$

$$h_{ij} \rightarrow h_{ij} - \partial_i \xi_j - \partial_j \xi_i$$

$$\pi \rightarrow \pi - \xi_0$$

For π to propagate, we must go to $(\nabla \pi)^4$!

$$K_{ij} = \frac{1}{2} \left(\partial_0 h_{ij} - \partial_j h_{0i} - \partial_i h_{0j} + \partial_i \partial_j \pi \right)$$
$$\delta K_{ij} = 0$$

Spatial kinetic pieces for π :

$$K_{ij}^2, K_{ii}^2 \to (\nabla^2 \pi)^2$$

Kinetic Term for Goldstone

Even in $M_{\rm Pl} \to \infty$ limit, residual space diffeomorphisms force

$$\pi: \quad \omega^2 = \frac{k^4}{M^2}$$

Mixing with Gravity:

$$\omega^2 = -\frac{M^2}{2M_{\rm Pl}^2}k^2 + \frac{k^4}{M^2}$$

Bounds on M:

$$r_c \sim \frac{M_{\rm Pl}}{M^2}$$
 $r_c > H_0^{-1} \Rightarrow M < 10^{-3} \text{ eV}$
 $t_c \sim \frac{M_{\rm Pl}^2}{M^3}$ $t_c > H_0^{-1} \Rightarrow M < 10 \text{ MeV}$

Consistent Effective Theory

Just the Goldstone Boson $(M_{\rm Pl} \to 0)$:

$$\mathcal{L} = \frac{1}{2}\dot{\pi}^2 - \frac{1}{2M^2}(\nabla^2\pi)^2 - \frac{\lambda}{2M^2}\dot{\pi}(\nabla\pi)^2 + \frac{\lambda}{8M^4}(\nabla\pi)^4 + \dots$$

Coupled to Gravity (Unitary Gauge $\pi \equiv 0$):

 γ_{ij} = spatial metric, constant time slice

 $K_{ij} = \text{extrinsic curvature from } \gamma_{ij}$

$$R^{(4)} = R^{(3)} + K_{ij}^2 - K^2$$

$$\mathcal{L} = \sqrt{g}R^{(4)} + \sqrt{\gamma} \left(M^4 (g^{00} - 1)^2 - \alpha_1 M^2 K^2 - \alpha_2 M^2 K_{ij}^2 + \ldots \right)$$

Long-Range Spin-Spin Force

Goldstone of L.V. mediates a 1/r potential! Ingredients:

$$\frac{1}{F}\vec{s}\cdot\vec{\nabla}\pi \qquad \omega^2 = \frac{k^4}{M^2}$$

Review of Usual Goldstones

Goldstone φ with $\omega \sim k$ dispersion relation.

Typical pseudoscalar interaction:

$$\mathcal{L}_{\text{int}} = \frac{1}{F} \vec{s} \cdot \vec{\nabla} \varphi$$

Non-relativistic ($\omega = 0$) potential:

$$V_{\varphi}(r) = \frac{-1}{F^2} (\vec{S}_1 \cdot \vec{\nabla}) (\vec{S}_2 \cdot \vec{\nabla}) \int \frac{d^3k}{(2\pi)^3} \frac{1}{k^2} e^{i\vec{k}\cdot\vec{r}}$$

The potential is identical to magnetic dipoles:

$$V_{\varphi}(r) = \frac{1}{4\pi F^2} \frac{(\vec{S}_1 \cdot \vec{S}_2) - 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r^3}$$

Wilczek and Moody, 1984.

Potential with Goldstone of L.V.

 π : $\omega \sim k^2/M$ dispersion relation.

Leading Standard Model coupling:

$$\mathcal{L}_{\text{int}} = \frac{1}{F} \vec{s} \cdot \vec{\nabla} \pi$$

Non-relativistic ($\omega = 0$) potential:

$$V_{\pi}(r) = \frac{-1}{F^2} (\vec{S}_1 \cdot \vec{\nabla}) (\vec{S}_2 \cdot \vec{\nabla}) \int \frac{d^3k}{(2\pi)^3} \frac{M^2}{k^4} e^{i\vec{k}\cdot\vec{r}}$$

A new long-range inverse-square law force!

$$V_{\pi}(r) = \frac{M^2}{8\pi F^2} \frac{(\vec{S}_1 \cdot \vec{S}_2) - (\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r}$$

Three Considerations

• Time Effects

What does non-relativistic limit mean? $\omega \ll k^2/M$ implies $t \gg Mr^2$. How long do we have to wait to see potential?

• Size Effects

Does \vec{s} coherently source π ? Is there $\gamma = MRv$ suppression?

• Velocity Effects

What does the potential look like if the source is moving with respect to the ether rest frame? Can the π field "keep up" with the moving source?

$$\alpha = Mrv \qquad \cos \theta_v = \hat{r} \cdot \hat{v}$$

$$V(r) = \frac{M^2}{8\pi F^2} \left(A(\alpha, \theta_v) \frac{\vec{S}_1 \cdot \vec{S}_2 - (\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r} + B(\alpha, \theta_v) \frac{(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r} \right)$$

$$\alpha = Mrv \qquad \cos \theta_v = \hat{r} \cdot \hat{v}$$

$$V(r) = \frac{M^2}{8\pi F^2} \left(A(\alpha, \theta_v) \frac{\vec{S}_1 \cdot \vec{S}_2 - (\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r} + B(\alpha, \theta_v) \frac{(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r})}{r} \right)$$

Experimental Possibilities

Spin force competes with gravity if:

$$\frac{M}{F} \sim \frac{1 \text{ GeV}}{M_{\text{Pl}}} \sim 10^{-19}$$

(One aligned spin per nucleon.) Same as $1/r^3$ search bound! Ritter, et. al. 1990

Unique angular dependence! Preferred direction in space! Daily and yearly effects!

Consistent, universal, dynamical Lorentz-violating theory with sharp predictions!

(The presence of the ghostone boson would be as shocking to the physics community today as the absence of the luminous ether was in 1887?)

Alnico Magnet Source

Large sources can push theory out of linear/predictive regimes. Alnico magnet with $MRv = \gamma \sim 1$.

 $M \sim 1 \text{ eV}$ and $v \sim 10^{-3}$ gives gravitational strength interaction with $R \sim .1 - 1 \text{ mm}$.

Gauged Ghost Condensation

Time Diffeo $\times U(1) \to U(1)$:

$$h_{\mu\nu} \rightarrow h_{\mu\nu} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu}$$

$$A_{\mu} \rightarrow A_{\mu} - \partial_{\mu}\alpha$$

$$\pi \rightarrow \pi - \xi^{0} - \alpha/M$$

$$\mathcal{L} = \mathcal{L}_{EH} - \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + M^4 \left(\dot{\pi} - \frac{A_0}{M} - \frac{h_{00}}{2} \right)^2$$
$$- \left(\nabla^2 \pi - \frac{\vec{\nabla} \cdot \vec{A}}{M} - \partial h \right)^2 + J^0 + \vec{J} \cdot \left(\vec{\nabla} \pi - \vec{A} \right)$$

Vev for Charged Scalar:

$$\phi \to \phi - \alpha$$
 $A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$ $\langle D_{\mu} \phi \rangle = \langle \partial_{\mu} \phi - A_{\mu} \rangle \neq 0$

Gauged Ghost Condensation

Polarizations:

2 modes ("
$$A_{\mu}$$
"): $\omega^2 = k^2$
1 mode (" π "): $\omega^2 = g^2 k^2 + \frac{k^4}{M^2}$

Ether Cherenkov Radiation for v > g.

Spin-Spin Potential $(v \ll g \ll 1)$:

$$V(r) = \frac{1}{8\pi r} \left(\vec{S}_1 \cdot \vec{S}_2 - (\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r}) \right) + \frac{g^2}{8\pi r} \left(\vec{S}_1 \cdot \vec{S}_2 + (\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r}) \right)$$

Cheng, Luty, Mukohyama, JKT: to appear

Gauged Ghost Condensation

Mixing with Gravity:

$$\omega^2 = (g^2 - g_c^2)k^2 + \frac{k^4}{M^2}$$
 $g_c = \frac{M}{\sqrt{2}M_{\text{Pl}}}$

Newton's Law $(v = 0, \epsilon = g_c/g)$:

$$V(r) = \frac{Gm_1m_2}{r} \frac{1}{1 - \epsilon^2} \left(1 + \epsilon^2 e^{-Mr\sqrt{g^2 - g_c^2}} \right)$$

Just a redefinition of G!

Newton's Law $(g \gg g_c, v \ll g)$:

$$V(r) = \frac{G'm_1m_2}{r} \left(1 + \frac{g_c^2 v^2}{2g^4} \sin^2 \theta_v \right)$$

Orbital Torque: $M < g^2 10^{18} \text{ GeV}$

Review Article, Will: gr-qc/0103036

New Ingredient in the Search for Lorentz-Violations

The Goldstone Boson of Spontaneous Lorentz-Violation

Must exist in a theory with gravity!

Kinetic terms have universal structure!

 $\omega \sim k^2$: New dynamical effects!

Long-Range Spin-Dependent Potential

1/r! Angular dependence!

Complements direct searches for

Lorentz-violating operators.

