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1 Ghost Condensation and Standard Model Dynamics

We have seen that the theory of ghost condensation [1] is the universal low-energy effective theory coming
from spontaneous time diffeomorphism breaking [2]. This theory offers unique insight into Lorentz- and
CPT-violating effects that are not present in models with simple soft breaking terms, because the pertur-
bations around the ghost vacuum are a physical excitation. Therefore, ghost condensation is not only a
Lorentz-violating theory but also one with interesting dynamical properties.

In particular, we might imagine that the Goldstone boson π associated with the broken time diffeo-
morphism symmetry could couple directly to Standard Model fields. The most interesting coupling — and
probably the most dangerous coupling phenomenologically — is a coupling to fermion spin-densities. We
will see that this leads to two very interesting effects. First, a point-like spin moving with respect to the
ghost vacuum with radiate away energy à la Cherenkov radiation until it is at rest relative to the ghost
vacuum. Second, the π field can mediate a long-range force between spins with an interesting velocity
dependence.

In essence, the theory of ghost condensation is the consistent effective field theory of the ether. While
there are tight experimental bounds on possible soft Lorentz-violating terms, there are fewer bounds on
dynamical Lorentz-violations, because most other “ether” models assume that the mediating bosons have
the usual w ∼ k dispersion relation. But the excitations of the ghost ether have a novel dispersion relation
that lead to novel dynamics, revealing new physics in a completely consistent framework.

2 Allowed Couplings to Standard Model Fields

We can easily generate all potential couplings between the π field and Standard Model fields by using
the Higgs-like language of ghost condensation [1]. In that language, a scaler field φ picks up a vacuum
expectation value

〈φ〉 = M2t+ π, (1)
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where M is the scale of spontaneous time diffeomorphism breaking, and π is the excitation around the
ghost vacuum. We are working in a coordinate system that is at rest relative to 〈φ̇〉. Before φ picks up a
vev, the ghost Lagrangian has a shift symmetry φ → φ + a, so φ must couple derivatively. Therefore, we
can generate all possible interactions by forming all Lorentz-invariant operators involving ∂µφ and then
expanding φ around its vacuum expectation value.

The leading Lorentz-invariant coupling of φ to Standard Model fermions is

Lint =
∑
ψ

cψ
F
ψ̄σ̄µψ∂µφ, (2)

where F is some mass scale. We can actually remove these couplings via a field redefinition

ψ → eicψφ/Fψ, (3)

but if there are Dirac mass terms in the action that break the U(1) symmetry ψ → eiθψ, ψc → eiθψc, then
the coupling to the fermion vector current can be removed but the coupling to the fermion axial current
remain. In particular, we are left with

Lint =
cΨ
F

Ψ̄γµγ5Ψ∂µφ. (4)

Expanding around the φ vacuum 〈φ〉 = M2t+ π,

Lint =
cΨ
F

(
M2Ψ̄γ0γ5Ψ + Ψ̄γ0γ5Ψπ̇ + Ψ̄~γγ5Ψ · ~∇π

)
. (5)

The first term gives rise to different dispersion relations for particles and anti-particles. The second term
can be removed by introducing interactions of higher order in ∂µφ [2]. The last term gives us the interesting
Lorentz-violating dynamics.

In the non-relativistic limit, the quantity Ψ̄~γγ5Ψ is the fermion spin-density ~s [3]. Therefore, we have
a coupling between spin-density and the π field

Lint ∼
1
F
~s · ~∇π. (6)

Note that this particular coupling can be forbidden by assuming a φ→ −φ symmetry (or a time reversal
invariance on the π theory coupled to gravity), but in general we expect that some coupling of a 3-vector
to ~∇π will be generated through graviton loops. If Oµν is a dimension four Standard Model operator, then
there is no symmetry forbidding the coupling

Lint ∼
1
M4

Pl

Oµν∂µφ∂νφ→
M2

M4
Pl

O0i∂iπ. (7)

One interesting candidate for Oµν is the stress-energy tensor Tµν , and T 0i is just the total momentum
density. Therefore, our analysis for spin-densities will carry over nicely for other 3-vector densities, albeit
with different coupling constants.
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3 Ether Cherenkov Radiation

In classical electrodynamics, Cherenkov radiation occurs when a charged particle moves through a medium
at velocities higher than the speed of light in that medium. It can be thought of as the optical analog
of a sonic boom. By energy conservation, the charged particle must lose energy in order to generate the
photonic shockwave, and once the particle’s velocity is less than the medium’s light speed, the Cherenkov
radiation ceases.

In the case of the ghost condensate, the dispersion relation for the π field is

w ∼ k2

M
, (8)

where M is the scale of spontaneous time diffeomorphism breaking. The velocity for the π field is

v ∼ w

k
=

k

M
, (9)

so for a particle traveling at some fixed velocity v0, there is always a k such that the speed of π is less than
the speed of the particle. Therefore, we expect that a particle in motion relative to the ether — and which
couples to the π field — will radiate away energy until it is at rest with respect to the ether.

In the case of usual Cherenkov radiation, we can use photon detectors to study the photonic shockwave
and use that information to understand the motion of the charged particles. A variation of this idea is
used in neutrino detectors like Super-K. Unfortunately, we don’t (yet) have π field detectors, so the most
likely experimental signature of ether Cherenkov radiation would be slight, unexplained kinetic energy loss
for particles with spin. (More precisely, kinetic energy gain in the reference frame moving with respect to
the ether.)

We can use a trick to calculate dE/dt for the particle in motion (i.e. the amount of power needed to
maintain the particle kinetic energy despite the ether drag). The Lagrangian for the π field coupled to a
spin-density source is

L =
1
2
π̇2 − 1

2M2
(∇2π)2 +

1
F
~s · ~∇π. (10)

The equation of motion for the π field is

π̈ +
1
M2

∇4π = − 1
F
~∇ · ~s. (11)

Multiplying both sides by π̇, integrating over all space, and rewriting:

d

dt

(∫
d3r

1
2
π̇2 +

1
2M2

(∇2π)2
)

=
1
F

∫
d3r ~s · ~∇π̇. (12)

We recognize the term in parenthesis as the energy of the π field. Any energy that goes into the π field
is energy that we would need to pump into the moving spin to maintain it’s velocity relative to the ether.
Therefore, the rate of energy loss by the moving spin due to ether Cherenkov radiation is

dEspin

dt
= − 1

F

∫
d3r ~s · ~∇π̇. (13)
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We can calculate this energy dissipation for a spin-density corresponding to a point-like spin moving
with velocity ~v relative to the ether:

~s = ~S δ(3)(~r − ~vt). (14)

Plugging this into our energy dissipation equation

dEspin

dt
= − 1

F
~S · ~∇π̇(~vt, t) (15)

Using the Green’s function for the π field, we can calculate the field π due to the source ~s. In momentum
space, the source looks like

~̃s = (2π)~S δ(w − ~k · ~v), (16)

and the π field like

π̃ =
2π
F

−i~k · ~S
w2 − k4/M2

δ(w − ~k · ~v). (17)

Going back to position space,

1
F
~S · ~∇π̇(~vt, t) =

1
F 2

∫
d3k dw

(2π)3
(−i~k · ~S)(i~S · ~k)(−iw)

w2 − k4/M2
δ(w − ~k · ~v)e−iwtei~k·~vt

=
−i
F 2

∫
d3k

(2π)3
(~S · ~k)2(~k · ~v)

(~k · ~v)2 − k4/M2
e−i

~k·~vtei
~k·~vt

=
−iM2

F 2

∫
k2dk dΩ
(2π)3

k3

k2

(~S · k̂)2(k̂ · ~v)
(Mk̂ · ~v)2 − k2

. (18)

We can do the k integral by noting that there are poles at k = ±Mk̂ ·~v. We choose an iε pole prescription
such that our moving particle loses rather than gains energy.

dEspin

dt
= −M

4

4F 2

∫
dΩ

(2π)2
(~S · k̂)2|~v · k̂|3

= −M
4

F 2

|v|
96π

(
|S|2|v|2 + 3(~S · ~v)2

)
(19)

We see that the rate of energy loss is roughly proportional to v3. (By the way, you probably shouldn’t
trust the factor of 96π. The other factors should be correct, though.)

We can follow the same logic for a “spin-dipole” source. The following spin-density corresponds to
two spins of opposite orientation separated by a vector ~a traveling together at velocity ~v:

~s = ~S δ(3)(~r + ~a/2− ~vt)− ~S δ(3)(~r − ~a/2− ~vt). (20)

Repeating the same calculation as above, we find

dEdipole

dt
∼ −M

2

F 2

∫
d3k

(~k · ~S)2(~k · ~v) sin2(~k · ~a/2)

(M~k · ~v)2 − k4
. (21)

Again, the integral over the magnitude of k is easy because of the simple poles.

dEdipole

dt
∼ −M

4

F 2

∫
dΩ (k̂ · ~S)2|k̂ · ~v|3 sin2

(
M(k̂ · ~v)(k̂ · ~a)

2

)
(22)
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Figure 1: The function f(α) for small and large α. The dashed curve is the best fit parabola near α = 0.

To get an idea for what this function looks like, we can go to the special case where ~a, ~v, and ~S all point
in the ẑ direction. Introducing the parameter α = Mva,

dEdipole

dt
∼ −M

4

F 2
S2v3

∫
dΩ (k̂ · ẑ)2|k̂ · ẑ|3 sin2

(α
2

(k̂ · ẑ)(k̂ · ẑ)
)

≡ −M
4

F 2
S2v3f(α). (23)

A plot of f(α) appears in Figure 1. We see that for small α, f(α) is quadratic in α. This corresponds to
the case that the spacing between the spins is much less than the length scale 1/M .

dEdipole

dt
∼ −M

4

F 2
S2v5(Ma)2 (Mva� 1) (24)

When α is large, f(α) asymptotes to a constant value. This corresponds to the case that the spins are far
apart compared to 1/M such that they can no longer be thoughts of as a spin-dipole and should be treated
as individual spins.

dEdipole

dt
∼ −M

4

F 2
S2v3 (Mva� 1) (25)

Clearly, any energy dissipation due to ether drag must be very small because we don’t observe bodies
with spin spontaneously slow down — or rather, speed up in the frame moving with respect to the ether.



Lorentz-Violating Dynamics 6

1 2 3 4
Γ

0.5

1

1.5

2

2.5

3

Figure 2: The functions A(γ) and B(γ) for γ ∼ O(1). The top curve is B(γ). Note that in the limit γ → 0,
these functions reproduce the results of equation (19).

To get a sense of it’s magnitude, consider the effect of this spin-drag on the earth. The earth has a magnetic
dipole moment of µ ∼ 1023 A m2, which corresponds to a net spin of

S ∼ µ

µB
= 1046, (26)

where µB ∼ 10−23 A m2 is the Bohr magneton. The velocity of the earth relative to the CMB is v ∼ 10−3,
though it need not be the case that the CMB rest frame is the same as the ether rest frame. From
experiments looking at torsion balance tests of direct spin couplings to the earth’s velocity, the upper
bound on M2/F is 10−25 GeV. In natural units 1 GeV−1 ∼ 10−25 s, so we can calculate that

dEearth

dt
∼
(
M2

F

)2

S2v3 ∼ 1058 GeV s−1. (27)

This is a huge energy loss! The mass of the earth is ME ∼ 1051 GeV, corresponding to a kinetic energy of

E =
1
2
MEv

2 ∼ 1045 GeV. (28)

By this calculation, the earth would come to rest in the CMB frame in less than a second!

But we’ve neglected a crucial point: the earth is not a point spin. We need to be more careful and
consider the ether drag on finite sources. For example, we can find the energy loss of a Gaussian spin
density:

~s =
~S

(2πR2)3/2
exp

(
−1

2

(
~r − ~vt
R

)2
)
. (29)

Following the exact same logic as above, we find the following expression for the rate of energy dissipation:

dEGaussian spin

dt
= −M

4

F 2

|v|
96π

(
A(γ)|S|2|v|2 +B(γ)(~S · ~v)2

)
, (30)
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Figure 3: The functions C(γ) and D(γ) for γ ∼ O(1). The top curve is D(γ). Note the γ scale difference
between this graph and Figure 2.

where γ = MRv, and

A(γ) =
6
γ6

(
(γ2 − 2) + e−γ

2
(γ2 + 2)

)
, B(γ) =

6
γ6

(
(γ2 − 6)− e−γ

2
(2γ4 + 5γ2 + 6)

)
. (31)

Plots of A(γ) and B(γ) for small γ appear in Figure 2. For the earth, R is on the order of 1000 km, and a
typical value for M is 1 MeV. This yields a γ parameter of 1016. For large γ the functions A(γ) and B(γ)
behave as

A(γ) ∼ 6
γ4
, B(γ) ∼ − 6

γ4
. (32)

Our revised estimate of the energy loss of the earth is then

dEearth

dt
∼
(
M2

F

)2

S2v3 1
γ4
∼ 10−6 GeV s−1. (33)

To see this kind of effect, we would have to wait longer than the age of the solar system!

To check that our answer makes sense, we should verify that the shape of the finite source does not
affect the large γ limits. Consider a rectangle function source:

~s =
~S

4
3πR

3

{
1 |~r − ~vt| < R
0 |~r − ~vt| > R

. (34)

This yields the energy dissipation formula,

dErectangle spin

dt
= −M

4

F 2

|v|
96π

(
C(γ)|S|2|v|2 +D(γ)(~S · ~v)2

)
. (35)

Plots of C(γ) and D(γ) for small γ appear in Figure 3. They look remarkably similar to the plots in Figure
2 except for a factor of 2 disagreement on the meaning of R. For large γ, the functions behave as

C(γ) ∼ 54 log γ
γ4

, D(γ) ∼ −54 log γ
γ4

, (36)
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so apart from a log γ factor, we expect that the ether spin drag on finite sources should be reduced by a
factor of γ4 = (MRv)4.

Now we see the reason why the ether spin-drag effects are so small. An M of 1 MeV corresponds to a
critical radius of 10−11 cm, which is on the order of the Compton wavelength of the electron. If we assume
that all of the spin of our objects comes from electron spin, then the only way to have a γ of O(1) is to
have a total spin of O(1). For example, the energy dissipation of an electron is

dEelectron

dt
= 10−25 GeV s−1, (37)

which is well beyond the capabilities of current experiments. If we decrease M by 6 orders of magnitude,
then the critical radius can enclose 1018 “Compton volumes”, allowing for a net spin of 1018 while still
keeping γ of O(1). In that case dE/dt is on the order of 1 eV s−1 which is certainly measurable. However,
for any real spin-polarized material, the spacing between electrons is much larger than the Compton
wavelength, and we would never be able to achieve such large spin-densities.

If we were really ambitious, we could calculate the energy dissipation for a rotating spin or an orbiting
spin. Unfortunately, any time dependence besides simple velocities makes a nightmare of calculating
Fourier transforms, and as of yet, I have been unsuccessful at extracting any useful information about
interesting time-dependent spin-densities.

4 Long-Range Spin Dependent Force

Now that we have an understanding of what happens when we have a single spin source, we can now
look at interactions involving two spin sources. We will see that the π field can mediate a long-range
spin dependent force that falls off much more slowly than typical spin-spin interactions. This raises the
interesting possibility of detecting the π field by looking at the force between large magnets, though once
again, we will have to contend with suppression factors coming from finite sources.

To start, we will look at the force between point spins due to mediation by a massless spin-0 field ϕ
that has a normal ω ∼ k dispersion relation. Such forces are examined in [4]. In the non-relativistic limit,
there is an allowed coupling

Lint =
1
F
~s · ~∇ϕ. (38)

In the Born approximation, the potential between two point spins is the Fourier transform of the propagator
times the couplings with ω → 0.

Vϕ(r) =
1
F 2

∫
d3k

(2π)3
(−i~k · ~S1)(−i~k · ~S2)

k2
ei
~k·~r =

−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
∫

d3k

(2π)3
1
k2
ei
~k·~r (39)

The Fourier transform of 1/k2 is well-known.

Vϕ(r) =
−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
1

4πr
(40)

Using the fact that ∂ir = xi/r,

Vϕ(r) =
1

4πF 2

(~S1 · ~S2)− 3(~S1 · r̂)(~S2 · r̂)
r3

. (41)
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The form of this potential is very similar to the potential between magnetic dipoles in electromagnetism.

What about for the case of the π? The interaction is the same as from equation (6), and with the
strange dispersion relation for the π field, the spin-spin potential goes as

Vπ(r) =
−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
∫

d3k

(2π)3
M2

k4
ei
~k·~r =

M2

F 2
(~S1 · ~∇)(~S2 · ~∇)

r

8π
. (42)

Expanding the derivatives:

Vπ(r) =
M2

8πF 2

(~S1 · ~S2)− (~S1 · r̂)(~S2 · r̂)
r

. (43)

The novel dispersion relation for π has produced a long range 1/r potential between spins! Assuming that
M/F is not too small, we might be able to design experiments to measure this force.

Before we get too excited, we have to be careful about two things. One is that for a real experiment
we will be dealing with finite sources, and just like the example of Cherenkov radiation, we expect to see
some suppression by the size of the sources. But even putting that aside, we need to understand what the
Born approximation really means in this context. By taking ω → 0, we are assuming that ω � k2/M . In
position space, this means that our approximation is only valid on time scales

t�Mr2. (44)

For a normal ω ∼ k dispersion relation, we have to only wait a time t = r for our system to behave
“non-relativistically”. For the π mediated forces, however, the time to reach steady state is increased by
a factor of Mr. For an M of 1 MeV, this factor is r/(10−11 cm), or the number of electron Compton
wavelengths between the spins. This is a huge number for any macroscopic separation. Thus, in order to
understand how the spin-spin force evolves, we should really calculate Vπ(r, t).

We will start with a spin source at the origin that turns on at t = 0:

~s = ~S1 δ
(3)(~r) θ(t). (45)

Assuming a test spin ~S2 sitting at ~r, the expression for Vπ(r, t) is

Vπ(r, t) =
−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
∫
d3r0 dt0 δ

(3)(~r0) θ(t0)
∫
d3k dw

(2π)4
1

w2 − k4/M2
ei
~k·(~r−~r0)e−iw(t−t0)

=
−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
∫

d3k

(2π)3
M2

k4

(
1− cos(tk2/M)

)
ei
~k·~r, (46)

where we have used a pole prescription corresponding to the retarded potential. For large t, the oscillatory
part of the integral vanishes, and we recover the result from equation (42). When t = 0, the potential is
zero, as we would expect because information about ~S1 has not yet reached ~S2. If we had a normal ω ∼ k
dispersion relation, then the potential would turn on suddenly when t = r. Here, however, there is no
Lorentz invariance, so we have no reason to expect a vanishing potential outside the light-cone.

To solve for the potential, we perform the angular k integrals, and then introduce the variables
z = k

√
t/M and ~s = ~r

√
M/t.

Vπ(r, t) =
−M2

F 2
(~S1 · ~∇s)(~S2 · ~∇s)

√
M

t

∫ ∞

−∞

dz

(2π)2
1
iz3

(
1− cos(z2)

) eizs
s

≡ −M2

F 2

√
M

t
(~S1 · ~∇s)(~S2 · ~∇s)h(s). (47)
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Figure 4: The functions K(x) and L(x) for x ∼ O(1). The top curve is L(x). Note that both functions
asymptote to 1 in the large x limit.

Performing the derivatives:

Vπ(r, t) =
M2

8πF 2

K(t/Mr2)(~S1 · ~S2)− L(t/Mr2)(~S1 · r̂)(~S2 · r̂)
r

, (48)

where
K(x) = −h′(1/x2), L(x) =

1
x2
h′′(1/x2)− h′(1/x2). (49)

Plots of these functions appear in Figure 4. We see that the potential does not come to its full value until
t ∼ Mr2. However, for t small compared to Mr2, it appears that the potential oscillates between being
attractive and repulsive.

One possibility is that by postulating a source that turns on suddenly at t = 0, we are introducing
transients into the potential. Thus, we would like to smooth out the potential in order to understand the
small t behavior and check whether the oscillations are real. Consider the following source:

~s = ~S1 δ
(3)(~r)


1 t > 0
1 + t/T − T < t < 0
0 t < −T

. (50)

This corresponds to a linear ramping of the source that begins at t = −T and reaches its final value at
t = 0. Performing the exact same manipulations at before, we find

Vπ(r, t) =
−M2

F 2

√
M

t
(~S1 · ~∇s)(~S2 · ~∇s)hmod(s, t/T ), (51)

where hmod(s, t/T ) is some new function with explicit time dependence. As a check that the limits work out
correctly, we note that hmod(s,∞) = h(s). We can now easily calculate the new functions Kmod(x, T/Mr2)
and Lmod(x, T/Mr2) that would plug into equation (48), where as before x = t/Mr2. Graphs of these
functions appear in Figure 5.
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Figure 5: The functions Kmod(x, T/Mr2) and Lmod(x, T/Mr2) for x ∼ O(1). From right to left, the graphs
correspond to T/Mr2 = 0 (dashed), .5, 5, 50, 500. The range of x values are limited by numerical precision.
For T →∞, the potential is 1 for all x.
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Figure 6: The functions K(x) and L(x) for x ∼ O(1) with dashed lines corresponding to the small x
envelopes |K(x)| ∼ 4.5x6 and |L(x)| ∼ 2.3x2.
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We see that the oscillatory behavior is robust to changes in T . As the ratio of T to Mr2 increases, the
amplitude of the modulations decreases and the onset of the full potential comes sooner, but there is still
some small oscillatory behavior. As seen in Figure 6, in the T → 0 limit the oscillations have amplitude

|K(x)| ∼ x6, |L(x)| ∼ x2. (52)

Because x = t/Mr2, it appears that for early times, the K(x) piece acts as a 1/r13 oscillatory potential
and the L(x) piece acts like a 1/r5 oscillatory potential until both pieces settle down to a 1/r potential at
t ∼Mr2.

Now we would like to understand any suppression of the potential coming from finite sources. Ignoring
time dependence, we can use a rectangle source:

~s =
~S

4
3πR

3

{
1 |~r| < R
0 |~r| > R

. (53)

If we have a test spin ~S2 at ~r, the expression for Vπ is (after Fourier transforming ~s):

Vπ(r) =
−1
F 2

(~S1 · ~∇)(~S2 · ~∇)
∫

d3k

(2π)3
M2

k4

3(sin kR− kR cos kR)
(kR)3

ei
~k·~r. (54)

We only care about the potential for r > R (i.e. outside the source). Performing the integral and doing
the derivatives:

Vπ(r) =
M2

8πF 2

P (R/r)(~S1 · ~S2)−Q(R/r)(~S1 · r̂)(~S2 · r̂)
r

, (55)

where

P (R/r) = 1− R2

5r2
, Q(R/r) = 1− 3R2

5r2
. (56)

So although there is a suppression when the test spin is very close to the source, for separations large
compared to the size of the sources, we can ignore the effects of finite sources. Similarly, if we were
conducting an actual experiment with magnets, we need not worry about bringing the magnets too close
together, because by varying r, we could isolate the 1/r dependence coming from our π field from the 1/r3

dependence that we could ascribe to a hypothetical ϕ field. We can see from equation (41) that even the
factor of 3 works out.

All of our calculations have been done in the ether rest frame. At this point, we should check the
potential for spins moving with various velocities relative to the ether to see whether there is any interesting
velocity dependence. In particular, experiments on the earth with magnets fixed to the surface of the earth
would be described by sources moving together with a slowly varying velocity v. We might expect that
if the source and test spin are traveling fast with respect to the ether, then the π waves will not be able
to “keep up”, and the spin-spin potential will be suppressed. What we will actually find is far more
interesting.

Consider a moving source:
~s1 = ~S1δ

(3)(~r − ~vt). (57)

We want to look at the co-moving potential, namely the potential between ~S1 and some test spin ~S2 that
is moving at the same velocity as ~S1. Following a similar logic to our previous calculations, we find

V (r) =
M2

F 2
(~S1 · ~∇)(~S2 · ~∇)

∫
d3k

(2π)3
ei
~k·~r

(M~k · ~v)2 − k4
≡ M2

8πF 2
(~S1 · ~∇)(~S2 · ~∇)f(r,Mv, θv), (58)



Lorentz-Violating Dynamics 13

10 20 30 40 50 60
Α

-1

-0.5

0.5

1

1.5

Figure 7: The functions A(α, π/4) and B(α, π/4). The top function is B(α, π/4). Note that in the limit
α = 0, we recover the zero comoving velocity behavior.

where cos θv = r̂ · v̂, and

f(r,Mv, θv) = 8π
∫
dk dΩ k2

(2π)3
eikk̂·~r

k2
(
(Mk̂ · ~v)2 − k2

) . (59)

To evaluate this integral, we will do the integral over the ranges k ∈ (−∞,∞), kθ ∈ (0, π/2), and kφ ∈
(0, 2π). The pole prescription to find the Fourier transform is to split each pole into two pieces, one in the
upper half plane and one in the lower half plane. By our choice of integration ranges, we can safely close
the k contour in the upper half plane. The expression for f becomes:

f(r,Mv, θv) =
8π
2

∫
dΩ

(2π)2
sin
(
Mrv(k̂ · r̂)(k̂ · v̂)

)
Mvk̂ · v̂

. (60)

Note that in limit v → 0, we recover f(r) = r, as from equation (42). Applying the derivatives to f , the
potential looks like

V (r) =
M2

8πF 2

A(α, θv)(~S1 · ~S2)−B(α, θv)(~S1 · r̂)(~S2 · r̂)
r

, (61)

where α = Mrv and

A(α, θv) =
d

dr
f(r,Mv, θv), B(α, θv) =

d

dr
f(r,Mv, θv)− r

d2

dr2
f(r,Mv, θv). (62)

To get an idea of what the functions A and B look like, we can evaluate them in certain limits. For
example, when the velocity vector is parallel to the spin displacement,

A(α, 0) =
sinα
α

, B(α, 0) =
2 sinα
α

− cosα. (63)

Similarly, when the velocity vector is perpendicular to the spin displacement,

A(α, π/2) =
2
α

sin
(α

2

)
, B(α, π/2) =

4
α

sin
(α

2

)
− cos

(α
2

)
. (64)
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Figure 8: The functions B(7, θv) and B(19, θv). The top function is B(19, θv).

In general, for large α, the functions A and B are bounded by

|A(α, θv)| ≤
2
α
, |B(α, θv)| ≤ 1, (65)

so while the A component dies away with increasing α, the B component survives at all distances regardless
of how large α is. What is bizarre about these functions are their oscillatory behavior. For example, in
Figure 7 we see A and B for θv = π/4. As α varies, the potential switches between being attractive and
repulsive, in much the same way as the early time behavior of equation (51). Similarly, if we fix α and vary
θv, we see similar kinds of oscillations, as in Figure 8. The experimental implications are not quite clear,
but it is encouraging that we do not see the huge comoving velocity suppression that we might naively
expect.

5 Possible Breakdown Near Large Sources

As a check that our framework makes sense, we should verify that introducing large sources does not affect
the validity of our effective field theory. In particular, if the coefficient of the source term

Lint =
1
F
~s · ~∇π (66)

is large, then we can’t ignore the back reaction of the π field on the source ~s. Similarly, in order to claim
that the π fields don’t become strongly coupled and thereby violate unitarity, we need to check that ~∇π is
small compared to the scale M2. It will turn out that both of these constraints will give the same bounds
on the sizes of allowed sources.

Roughly speaking, the source term becomes large when

S

FR
∼ 1, (67)

where S is the total spin of the source, and R is a typical length scale associated with the source. (We’ve
used that ~∇ ∼ 1/R.) If F is some very large scale such as the Planck scale, then R has to be small
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Figure 9: The function g′(x) for x near 1.

compared to this scale for there to be a danger. But even for an electron, R � 1/F , so we are certainly
justified in ignoring the back reaction of the π field on fermion fields.

What about for large sources at rest relative to the ether? Again consider the rectangle source

~s =
~S

4
3πR

3

{
1 |~r| < R
0 |~r| > R

. (68)

We want to calculate ~∇π for this source. Again using Green functions,

π(~r) ∼ M2

F

∫
d3k

~k · ~S
k4

sin kR− kR cos kR
(kR)3

ei
~k·~r ∼ M2r̂ · ~S

FR
g
( r
R

)
, (69)

where g(x) is some unenlightening function. Ignoring angular dependence (which turns out to only decrease
the magnitude of the gradient), the gradient of π is

∇π(r) ∼ M2S

FR
g′
( r
R

)
. (70)

A plot of g′(x) appears in Figure 9. We see that it is well behaved at all values of r/R. Our effective theory
will break down when ~∇π ∼ M2, and this occurs when S/FR ∼ 1, the same result we found in equation
(67).

6 Effect of Background Perturbations

Our analysis assumed that 〈φ〉 = M2t was a good background for the π field. While this assumption
is good when the sources of φ are small, gravitational effect can distort the φ profile and add spacial
inhomogeneities. While these inhomogeneities are not fully understood yet, we will show that as long as
the typical length scale of inhomogeneities is large compared to the size of our experiments, then we can
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understand the effect of spacial inhomogeneities simply as a redefinition of the local velocity of the ether
“wind”.

Consider expanding around the background 〈φ〉 = M2t+ε(~x), where ε(~x) is some spacial perturbation.
To find the quadratic piece of the Lagrangian for the π field in the canonical ghost language, we expand
the leading order ghost Lagrangian

Lghost =
(〈∂µφ∂µφ〉 − ∂µφ∂

µφ)2

8M4
− (〈�φ〉 −�φ)2

2M2
+ . . . (71)

about the vev of φ. Going to canonical normalization for the π field, the quadratic piece of the Lagrangian
in the non-relativistic limit is

Lquad =
1
2

(
π̇ − ~∇ε · ~∇π

)2
−
(
∇2π

)2
2M2

. (72)

At first this seems like we have modified the π propagator, but we can do a (non-relativistic) Galilean
coordinate transformation, assuming that the gradient of ε does not vary much on a local coordinate
patch:

~x→ ~x+ (~∇ε)t, t→ t. (73)

Under this coordinate transformation,

∂

∂~x
→ ∂

∂~x
,

∂

∂t
→ ∂

∂t
+ ~∇ε · ∂

∂~x
, (74)

so we see readily that local inhomogeneities in the φ background can be accounted for by a simple “boost”
to the local ether “rest frame”. Because we have carried out all of our analyses for a generic velocity, our
arguments will go through unchanged, assuming that φ does not vary much over the typical length scale
of any experiment.

7 Outlook

Using the language of effective field theory, we have seen interesting Lorentz violating effects coming from
the interaction of Standard Model fermions with the Goldstone boson π associated with spontaneous time
diffeomorphism breaking. Though the particular couplings to fermion spin-density can be removed by as-
suming a φ→ −φ symmetry, other couplings to 3-vector densities will be generated through graviton loops,
and a similar analysis will hold in those cases. In particular, we expect further examples of Cherenkov-like
radiation, as well as forces between sources of 3-vector currents. From our study of finite sources, we expect
the Cherenkov effects to be suppressed by some power of MR, in addition to suppression by the Planck
scale. And we expect a bizarre velocity dependence in the long-range potential between 3-vector sources.

Because couplings between the π sector and the Standard Model generically generate Lorentz-violations,
it is imperative that we catalog all possible interactions between the π field and Standard Model fields
so we understand exactly where all Lorentz-violating effects might show up. Our task is made somewhat
easier because the scale of spontaneous time diffeomorphism breaking should be around or less than 1 MeV,
a scale at which the dominant degrees of freedom are just electrons and photons. In effect, we need only
consider Lorentz violating effects in QED, and the non-dynamical interactions are classified in [5]. Our
goal is to augment the catalog of non-dynamical interactions with dynamical interactions coming from π
physics.
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[5] D. Colladay and V. A. Kostelecký. Lorentz-Violating Extension of the Standard Model.
hep-ph/9809521.


