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1 Ghost Condensation

The theory of ghost condensation [1] offers us insight into a new consistent IR modification of gravity. It
can also be used as an alternate model to slow-roll inflation [2], and in subsequent talks I will explore the
connection between ghost condensation and Lorentz violating effects in the Standard Model.

But ghost condensation is certainly not the first IR modification of gravity that we have seen; a classic
example is Einstein gravity with a Fierz-Pauli mass term. Experimental tests have ruled out massive gravity
(or at least put tight constraints on its UV completion), but you may wonder whether we could follow
the logic of the massive gravity construction to create a slightly different theory with greater experimental
viability.

In essence, massive gravity is just a low energy effective field theory coming from spontaneous diffeo-
morphism breaking. The Goldstone bosons from the broken symmetries are eaten (in unitary gauge) to
form the “longitudinal” modes of the now massive graviton. There is a slight twist, because diffeomor-
phism in 4 dimensions are parameterized by 4 degrees of freedom, whereas there are only 3 longitudinal
modes for a 4D massive graviton. So we have to choose the mass term carefully to make sure there are no
pathological kinetic terms from the extra Goldstone mode.

In this language, ghost condensation is equivalent to a low energy effective field theory coming from
spontaneous time diffeomorphism breaking. There is only one Goldstone mode, and it is eaten (in unitary
gauge) to form the “longitudinal” mode of the ghost condensed graviton. In this way, it is quite analogous
to Fierz-Pauli massive gravity. Of course, both theories suffer from the problem that neither has a well-
defined UV completion. In effect, we have no well-defined Higgs-like mechanism to generate the symmetry
breaking (though in the case of ghost condensation, one could make the argument that we are seeing a
gravitational Higgs effect). Regardless, at energies near and below the symmetry breaking scale, we have
a nice, well-defined effective field theory.

In this paper, I will present the construction of the ghost condensate Lagrangian in the language of
spontaneous symmetry breaking. Starting from the example of a massive U(1) gauge boson, we will see
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how the idea of Goldstone bosons carries over from gauge symmetry breaking to diffeomorphism breaking.
Our goal is to see how the Goldstone boson corresponding to broken time diffeomorphisms could couple
to Standard Model fields, generating possibly observable Lorentz violating effects in SM sector.

2 A Review of Spontaneous Symmetry Breaking

We are all familiar with the example of a spontaneously broken U(1) gauge symmetry. We have seen many
times that the Goldstone boson corresponding to the broken symmetry is eaten to form the longitudinal
mode of the now massive gauge boson. Above the symmetry breaking scale v we have the gauge symmetry

Aµ → Aµ + ∂µα. (1)

Below the scale v, this symmetry is spontaneously broken by whatever mechanism, but we can restore it
formally by performing the broken symmetry and promoting it to a field φ. Our non-linear U(1) gauge
symmetry is

Aµ → Aµ + ∂µα, φ→ φ− α. (2)

The relevant, Lorentz invariant, and gauge invariant interactions we can form are

L = − 1
4g2

FµνF
µν + v2(Aµ + ∂µφ)2, (3)

where dimension-full couplings are just set by the symmetry breaking scale v. In unitary gauge, we set
φ = 0, and going to canonical normalization, we are left with the familiar Lagrangian of a massive U(1)
gauge boson:

L = −1
4
FµνF

µν +m2AµA
µ, (4)

where m = gv is the mass of the gauge field. If we want to couple matter to our gauge boson, we need
only identify the charge of our particle under the U(1) symmetry and form all gauge invariant interactions,
being mindful to include couplings to the φ field.

Note that we can look at the limit as g → 0 holding v fixed. The Aµ field decouples from the φ field,
and we are left with (in canonical normalization):

L =
1
2
(∂µφ)2. (5)

This is just the standard Lagrangian for a massless scalar field, which tells us that our theory is well
behaved in the decoupling limit.

What about the case of a non-Abelian gauge symmetry G being spontaneously broken to the subgroup
H? Let Ta be the group generators of G. Above the symmetry breaking scale v, the gauge symmetry is

AaµTa → eiα
aTa

(
AaµTa + i∂µ

)
e−iα

aTa (6)

Below the scale v, this symmetry is spontaneously broken, but we can easily restore it. Let TA be the
broken symmetry directions. The new, non-linear realization of the gauge symmetry G is

AaµTa → eiα
aTa

(
AaµTa + i∂µ

)
e−iα

aTa , U → eiα
ATAUe−iα

ATA . (7)
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The relevant, Lorentz invariant, and gauge invariant interactions we can form are now

L = − 1
2g2

tr (FµνFµν) + v2 tr(DµUD
µU †), (8)

where Fµν is the standard Faraday tensor of non-Abelian gauge symmetries, and Dµ = ∂µ − iAAµTA is the
gauge covariant derivative in the broken directions only. In unitary gauge, we set U = 1 and arrive at the
Lagrangian of a gauge boson with dim(G)−dim(H) massive modes corresponding to the dim(G)−dim(H)
Goldstone bosons that were eaten:

L = −1
2

tr (FµνFµν) +m2AAµA
µ
A, (9)

where again m = gv. The physics in terms of the U field is much easier to understand than the physics
in unitary gauge because the Lagrangian for U is just a (gauged) non-linear sigma model. If we go to the
decoupling limit, then we find:

L = v2 tr(∂µU∂µU †) (10)

which is just a regular non-linear sigma model for the broken symmetry directions. If we expand U =
eiφ

ATA , then the low energy physics in the decoupling limit is described by the interactions of φA.

The advantage of introducing φ or U is threefold. First, it isolates scattering amplitudes that involve
the longitudinal mode of the massive gauge boson. This is especially important in theories like massive
non-Abelian gauge theories where the longitudinal modes become strongly coupled at the scale 4πv, and
where naive Feynman diagram analysis gives the wrong answer.

Second, Goldstone bosons enable us to understand the structure of higher order terms in the La-
grangian. Naively, one might think that if gauge symmetry is broken at a scale v, then terms like (∂µAµ)2

could appear in the low energy Langrangian. While this is true, the coefficient of this term is not arbitrary
because it really comes paired with a (�φ)2 term and is therefore suppressed by two powers of the cutoff
Λ = 4πv. Thus, the coefficient of the (∂µAµ)2 term is actually (v/Λ)2, so the term (∂µAµ)2 is actually
suppressed by a factor of 1/16π2.

Third, Goldstone bosons sometimes make it easier to envision a possible UV completion of the model
(such as the Higgs mechanism). Note, however, that we need not have a UV completion in hand to justify
the low-energy Lagrangian in equation (3). It is a universal form that depends only on the existence of —
and not the specific mechanism of — spontaneous symmetry breaking.

3 Spontaneous Diffeomorphism Breaking and Massive Gravity

The key to understanding massive gravity in the language of spontaneous symmetry breaking is to regard
gravity as merely another gauge theory. If we linearize gravity around a flat background, gµν = ηµν + hµν ,
then diffeomorphisms are just the gauge symmetry

hµν → hµν + ∂µξν + ∂νξµ. (11)

To preserve diffeomorphism invariance, the quadratic piece of the Lagrangian must take the form

L =
1
2
(∂ωhµν)2 + (∂µh)(∂νhµν)−

1
2
(∂µh)2 − (∂νhµν)2, (12)
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where we raise and lower indices with respect to the flat metric ηµν and h = hµµ. This is just the linearization
of the Einstein action,

L =
√
gR. (13)

(If we want to be really careful, we can track all factors of λ =
√

8πG in order that hµν has mass dimension
1. For a rough idea of how this works, see [4].)

What if we spontaneously break diffeomorphism invariance? Comparing to the case of the massive
gauge boson, we expect that the Goldstone bosons will form the “longitudinal” modes of the spin-2 boson.
We can formally restore diffeomorphism invariance by introducing a Goldstone vector Aµ. (This is in
keeping with the notation of [3]).

hµν → hµν + ∂µξν + ∂νξµ, Aµ → Aµ − ξµ. (14)

We still have all of the terms in the massless Lagrangian from equation (12), but we can also form the
following relevant, Lorentz invariant, and gauge invariant mass terms:

∆L = αv2(hµν + ∂µAν + ∂νAµ)2 + βv2(h+ 2∂µAµ)2, (15)

where v is the symmetry breaking scale, and α and β are coefficients we are free to choose.

In the case of broken gauge symmetry, the choice of any O(1) coefficients did not affect our theory, but
now, we want to make sure that the kinetic terms for Aµ have the right form in order for our theory not
to have ghosts or tachyons in the decoupling limit. In essence, the fact that there are 4 Goldstone modes
but only 3 allowed longitudinal modes means that we should expect to do some fine-tuning to arrive at a
healthy theory.

If we set hµν = 0 (equivalently, if we send Mpl →∞), we can isolate the Aµ kinetic terms.

∆L = αv2(∂µAν + ∂νAµ)2 + βv2(2∂µAµ)2 = αv2(Fµν)2 + (2α+ 2β)v2(∂µAµ)2 (16)

The first term looks like a perfectly reasonable kinetic term for a massless spin-1 field, albeit with a
non-standard normalization. The second term breaks U(1) gauge invariance for Aµ, but we can formally
restore it (and isolate the spin-0 longitudinal mode of the massive graviton) by performing the broken
gauge transformation and promoting it to a field φ:

(∂µAµ)2 → (∂µAµ + �φ)2. (17)

So the kinetic term for φ is
∆L = (2α+ 2β)v2(�φ)2. (18)

This gives a dispersion relation involving p4 instead of p2, which implies that the φ external states could
be ghosts or tachyons. In order to eliminate this pathologinal kinetic term, we should choose α = −β.
Going to unitary gauge, equation (15) is precisely the Fierz-Pauli mass term,

∆L = αv2
(
(hµν)2 − h2

)
. (19)

In this way, we have recreated the quadratic part of the massive gravity Lagrangian.

There is much more to the story of massive gravity. In particular, in this flat space case, a kinetic
term for φ is generated through mixing with hµν . Also, choosing different vacua to expand gµν around
give different results in the decoupling limit. And looking at the interactions of the Aµ and φ fields tells
us at what mass scale we expect a violation of unitarity. But the point is clear: by using a Goldstone
boson analysis of the broken gauge symmetries, we can more easily understand the physics than in unitary
gauge.
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4 Spontaneous Time Diffeomorphism Breaking and Ghost Condensa-
tion

In the example of massive gravity we choose to break each of the diffeomorphism directions. Now, we can
generate an effective field theory for the ghost condensate by choosing only to break time diffeomorphisms.
Of course, there is no guarantee that our theory will make sense. In the case of massive gravity, only
through kinetic mixing did the spin-0 component have a healthy kinetic term. But here we will find that
the extra degree of freedom is well behaved, albeit with a Lorentz violating kinetic term leading to a
ω2 ∝ k4 dispersion relation.

Once again, we introduce a Goldstone field that compensates for the broken time diffeomorphism
symmetry. Our non-linear diffeomorphism is

hµν → hµν + ∂µξν + ∂νξµ, π → π − ξ0. (20)

(To maintain my sanity, I chose a different sign convention than [1].) Clearly, the kinetic term of equa-
tion (12) is still invariant under this symmetry. But we can also form polynomials out of the following
combinations:

H = h00 + 2∂0π, Kij =
1
2

(∂0hij − ∂jh0i − ∂ih0j − ∂i∂jπ) . (21)

Note that a term like (h0i + ∂iπ) is forbidden by the unbroken space diffeomorphism symmetry. So a
possible mass terms for the hµν fields (and correspondingly, kinetic terms for π) are

∆L =
1
8
M4H2 − M̃2

1K
2 − M̃2

2 (Kij)2 −
1
2
M̃3

3HK, (22)

where coefficients are slightly different than [1] and K = Kii.

Going to the decoupling limit Mpl →∞, we can set hµν = 0. Equation (22) becomes

∆L =
1
2
M4π̇2 − 1

2
M̃2(∇2π)2 − 1

2
M̃3

3 π̇∇2π, (23)

where dots indicate time derivatives, ∇ is the spacial gradient and M̃2 = (M̃2
1 + M̃2

2 )/2. We could have
eliminated the term proportional to M̃3 by imposing time-reversal invariance, but in the next section we
will see that there is an interesting effect if we do not make this assumption.

Right away, we see that there is a normal time-like kinetic piece for π but no (∇π)2 spacial kinetic
piece. Therefore, by breaking only time diffeomorphism invariance, we have broken Lorentz invariance in
the decoupling limit. The dispersion relation for π is

w2 =
M̃2

M4
k4 − M̃3

3

M4
wk2. (24)

We could continue in this manor to find the leading interactions of the π fields. Because of the funny
π dispersion relation, the scaling dimension of the interaction is not the same as the mass dimension of the
interaction, so we would have to do a bit of work to figure out which interaction is the most relevant. (It
turns out to be π̇(∇π)2.) Leonardo will show us that this interaction leads to interesting cosmic microwave
background signatures if the ghost field is the inflation. Taking a different route, we can look at the coupling
of the π field to gravity itself to see directly an infrared modification of gravity. Devin will investigate
whether such a modification could help explain dark matter or dark energy.
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5 Coupling Matter to the Ghost Condensate

If ghost condensation can lead to Lorentz violating effects in the gravity sector, a natural question is
whether these Lorentz violating effects can be communicated to the Standard Model sector. Because the
SM couples to gravity, there will always be effects transmitted through graviton loops, but we expect these
to be suppressed by powers of the Planck scale. What about direct coupling to standard model fields?

To understand this, we could go to the canonical ghost picture in which the ghost field φ achieves an
expectation value 〈φ〉 = M2t. In that language, we see that the ghost can couple to any vector operator
through

Oµ∂µφ. (25)

We want to find the same result, but in the language of spontaneous symmetry breaking.

First, we need to know how matter fields transform under unbroken diffeomorphisms. The linearized
metric transforms as

hµν → hµν + ∂µξν + ∂νξµ + . . . , (26)

where there are additional terms at O(ξ2) and O(hξ). To this order, a scalar transforms as

φ→ φ+ ξµ∂µφ. (27)

We want to define diffeomorphisms such that fields transform but derivatives do not. In other words, we
want δ(∂φ) = ∂(δφ):

∂µφ→ ∂µφ+ (∂µξν)∂νφ+ ξν∂ν(∂µφ). (28)

We expect that a vector should transform the same way as the divergence of a scalar, so

Aµ → Aµ + (∂µξν)Aν + ξν∂νAµ. (29)

All these formulas can be checked by looking at the linearized forms of diffeomorphisms from GR. If we
wanted to be really careful, we could figure out how a chiral spinor transformed under diffeomorphisms.
This would involve understanding the spin connection, however, which is more sophisticated than we need
for our purposes. It suffices to check that the combination ψψ transforms as a scalar and the combination
ψ̄σ̄µψ transforms as a vector, which they do.

As a quick check that everything is working, we can show that the combination(
ηµν +

1
2
hηµν − hµν

)
∂νφ∂µφ (30)

is invariant under diffeomorphisms. This is just the linearization of
√
ggµν∂νφ∂µφ, which is the covariant

kinetic term for a scalar.

If time diffeomorphisms are spontaneously broken, then all terms invariant under total diffeomorphisms
will still survive, but we also expect new couplings to be possible. In particular, all coupling to H, K, and
Kij are possible as long as they are invariant under SO(3) rotations (i.e. all i indices are contracted). We
will look at couplings to H below, but couplings to K or Kij are subleading because they involve more
derivatives on the π fields.
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What we really want is a direct coupling to vector couplings. In particular, we want to try to couple
a vector quantity Ai to h0i in a way that preserves space diffeomorphisms, and then perform the broken
time diffeomorphism to figure out how Ai couples to π. Under space diffeomorphisms and summing over
repeated indices:

h00 → h00,

h0i → h0i + ∂0ξi,

hii → hii + 2∂iξi,
A0 → A0 − (∂0ξj)Aj − ξj∂jA0,

Ai → Ai − (∂iξj)Aj − ξj∂jAi. (31)

(The extra minus signs are because we are using the mostly negative metric so AiB
i = −AiBi.) To

maintain SO(3) rotation invariance, we have the following allowed coupling to leading order.

Lint = αh0iAi + βhiiA0 + γA0 + δh00A0. (32)

Varying to leading order:

δ(Lint) = α(∂0ξi)Ai + β(2∂iξi)A0 + γ(−(∂0ξj)Aj − ξj∂jA0). (33)

So to have an interaction piece invariant under the remaining space diffeomorphisms, we must choose the
coefficients α = −2β = γ. The value of δ (i.e. the coupling to H) is unfixed.

Lint = α

(
h0iAi −

1
2
hiiA0 +A0

)
+ δh00A0. (34)

Under the broken time diffeomorphism, these quantities transform as

h00 → h00 + 2∂0ξ0,

h0i → h0i + ∂iξ0,

hii → hii,

A0 → A0 + (∂0ξ0)A0 + ξ0∂0A0,

Ai → Ai + (∂iξ0)A0 + ξ0∂0Ai. (35)

Performing these transformations and promoting ξ0 → π:

Lint = α

(
(h0i + ∂iπ)Ai −

1
2
hiiA0 +A0 + (∂0π)A0 + π∂0A0

)
+ δ(h00 + 2∂0π)A0. (36)

In the limit Mpl →∞, we find (renaming 2δ → −α′)

Lint = α (Ai∂iπ +A0)− α′A0∂0π. (37)

So we can have couplings between ∂iπ and the spacial components of a vector Ai as long as we also have
a term in the Lagrangian proportional to the time component of the vector A0. If we go to canonical
normalization for the π field, then

Lint =
1

F s−2

(
Ai∂iπ +M2A0

)
− 1
F ′s−2

(A0∂0π) , (38)
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where F and F ′ are two possibly different mass scales, s is the mass dimension of Aµ, and M is the mass
from equation (23). Note that the residual space diffeomorphisms forced the first two terms to have the
same overall coupling constant.

In the canonical ghost language, we can understand the relationship between these coupling constants
by looking at the interactions of the following form, expanding φ = M2t− π:

Aµ∂
µφ

(
∂νπ∂

νπ

M2

)n

→ (A0M
2 −A0∂0π +Ai∂iπ)

(
1− 2n∂0π

M2
+ · · ·

)
= (A0M

2 +Ai∂iπ)− (2n+ 1)A0∂0π. (39)

So we see that indeed, the coupling constant of the A0∂0π term is independent of the other two terms.

6 Coupling to Fermions Currents

Now we would like to couple π to some fermion currents in order to look for Lorentz violating effect in the
Standard Model. A natural choice is

Aµ =
∑
ψ

cψψ̄σ̄
µψ, (40)

where cφ are arbitrary coefficients. If we make the simplifying assumption that F = F ′, then equation (38)
leads to the interaction from [1]. Here, we will start with the assumption F ′ = 0, leading to the interaction

Lint =
∑
ψ

cψ
F

(M2ψ̄σ̄0ψ − ψ̄σ̄iψ∂iπ). (41)

Note however, that we can remove some of these couplings by the field redefinition

ψ → eicψ(M2t−π)/Fψ. (42)

In that case, the kinetic terms for the ψs become∑
ψ

iψ̄σ̄µ∂µψ →
∑
ψ

iψ̄σ̄µ∂µψ −
∑
ψ

cψ
F

(M2ψ̄σ̄0ψ − ψ̄σ̄iψ∂iπ − ψ̄σ̄0ψ∂0π), (43)

effectively trading an F term for a F ′ term. Because the interesting Lorentz violating effects come from
the F term, we want to create a Lagrangian that does not have all of the rephasing symmetry.

It will turn out that in order for ghost condensation to make sense as an infrared modification of
gravity, the scale M has to be much smaller than the electroweak scale. At this scale, we do have terms in
the Lagrangian that break the arbitrary rephasing symmetry, namely Dirac mass terms like mDψψ

c. We
can use the remaining diagonal rephasing symmetry to remove the vector coupling, but we will still be left
with an axial coupling. In Dirac notation:

Lint =
∑
Ψ

1
F

(M2Ψ̄γ0γ5Ψ + Ψ̄~γγ5Ψ · ∇π), (44)

where we have absorbed the factor of cΨ into the definition of F . The first term modifies the quadratic
piece of the Lagrangian. The equation of motion for Ψ (i.e. the modified Dirac equation) is(

γµpµ − µγ0γ5 −mD

)
Ψ(p) = 0, (45)
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where µ = M2/F . We can calculate the eigenvalues of this equation to find the dispersion relation:

ω =
√

(|k| ± µ)2 +m2
D. (46)

If we go to the limit mD → 0, the plus sign corresponds to left-handed particles and anti-particles and the
minus sign corresponds to right-handed particles and anti-particles.

Performing a Lorentz boost on the first term in equation (44), we can generate an interaction

Lint = µΨ̄~γγ5Ψ · ~v, (47)

where ~v is the velocity of our terrestrial experiments with respect to the preferred rest frame of the universe.
In the non-relativistic limit, this coupling is equivalent to a spin interaction Hamiltonian

Hint = µ~S · ~v. (48)

By performing precision atomic experiments, one can place limits on this coupling by looking for any
signals that vary as the earth moves around the sun. (I will discuss more about the limits on Lorentz
violating interactions in a follow-up paper.)

The most surprising interaction comes from the second term in equation (44). It enables us to draw
a Feynman diagram involving π exchange.

� (49)

If we calculate the amplitude for this process in the non-relativistic limit, then through the Born ap-
proximation, the Fourier transform of the amplitude will be proportional to the classical potential. The
Feynman rules for π in the non-relativistic limit (ω → 0) are

�k
=

i

w2 − M̃2

M4k4 + M̃3
3

M4wk2
→
ω→0

−iM4

M̃2

1
k4
, (50)

�
k

=
1
F
~γγ5 · ~k. (51)

The amplitude is therefore proportional to

M∼ M4

M̃2F 2

(S1 · ~k)(S2 · ~k)
k4

. (52)

We can do a Fourier transform of the amplitude to find the classical potential:

V (r) ∼ M4

M̃2F 2

~S1 · ~S2 − (~S1 · r̂)(~S2 · r̂)
r

. (53)
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This looks a lot like magnetic dipole-dipole interactions in electromagnetism (modulo a factor of 3), ex-
pect that the force decays as 1/r instead of 1/r3. This comes entirely from the fact that the dispersion
relationship for our π field goes as w ∼ k2 instead of the usual w ∼ k.

In fact, this dispersion relationship means that we need to be a bit careful by what we mean by the
non-relativistic limit. If we set up two large sources of spin a distance r apart, then it will take a time

τ ∼ 1
ω
∼ M2

M̃k2
∼ M2

M̃
r2 (54)

for the π fields to mediate information between source 1 and source 2. For example, if r = 1 m, and
M = M̃ = 1 MeV, then τ ∼ 5 hr. This is how long we would have to wait until we would really be able
to measure this long-range spin-dependent force. Because M controls both the strength of the interaction
and the time-scale over which an experiment would have to take place, it would be very difficult to see this
novel interaction if M were either too big or too small.

7 Prospects

We have seen that any theory that gives rise to spontaneous time diffeomorphism breaking has low energy
interactions governed by the π field. Like massive gravity, ghost condensation presents us with an interesting
infrared modification of gravity, but unlike Fierz-Pauli massive gravity, we end up with a theory that no
longer has Lorentz symmetry. We saw that if the ghost coupled directly to the Standard Model, then there
was necessarily a relationship between an interaction that modified the dispersion relationship for Dirac
fermions, and an interaction that gave rise to a long-range spin-dependent potential.

Our next goal is to understand the experimental bounds on the various parameters of our theory.
Physicists have been searching for Lorentz violating effects for a very long time, and the bounds are very
stringent. There is a universal language developed by V. A. Kostelecký and friends [5] that parametrizes
the space of Lorentz violations. By comparing this model with known bounds, we will be able to test
the experimental viability of all theories of spontaneous time diffeomorphism breaking, including ghost
condensation.
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