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1 Overview

When we looked at SU(2) in June, we wanted to know whether a matrix model could have any
connection to a real physical system. Indeed, we found recognizable properties of a top in the
classical and quantum mechanics of SU(2).

When we looked at SU(N) in July, we wanted to know whether the group properties of matrix mod-
els could help us solve physical systems. Indeed, the idea of group representations and characters
proved to be helpful in understanding the quantum mechanics of SU(N).

Now in August, we want to know whether matrix models can help us to solve physical systems
that would otherwise be difficult to solve in standard classical or quantum mechanics. In this
presentation, we will discuss some general theory of integrable systems and show how matrices
make it easier to solve a specific system: the Calogero model.

2 Integrable Systems

An integrable system is a system that has an integral of motion (i.e. conserved quantity) for each
degree of freedom. The simplest example is a free particle in N dimensions.

L =
1
2
m~̇x

2

~p = m~̇x with ~̇p = 0

The N dimensional vector ~p represents the N conserved quantities.

As one might guess, in order for a system to be integrable, the integrals of motion have to be
independent, meaning that they cannot be functions of the other integrals of motion. Also, the
integrals of motion have to be compatible, which means that their Poisson bracket (or commutator
if we are in quantum mechanics) must be zero:

{Ik, Il}PB = 0

1



A general property of integrable systems is that they can be solved by quadratures, meaning a
finite combination of algebraic operations, inverses of functions, and integrals of functions. In
other words, an integrable system is a system for which an exact time evolution can be obtained
analytically. In the case of the free particle above:

~x(t) =
~p

m
t + ~x(0)

Let me emphasize at the outset that the integrability of a system does not depend on whether we
have it in a matrix model form or not. That is, if a system is not integrable in the standard classical
or quantum sense, then it still won’t be integrable in a matrix model. But matrices do make it
easier to see the integrals of motion for systems that are indeed integrable but whose integrals of
motion are “hidden.”

3 Lax Pairs

The key to finding integrals of motion for matrix models is the Lax pair. If the equations of motion
of a system are equivalent to the matrix equation:

iȦ = [B,A] with B† = B

then Lax showed that the system is integrable. (The standard letters are L and M , but in this
talk, L is the Lagrangian and M is the matrix, so A and B are less confusing.)

The proof of this is straightforward. The Lax equation looks a lot like the time evolution of an
operator in the Heisenberg picture of quantum mechanics. So:

A(t) = e−iBtA(0) eiBt

(If you don’t believe this equation, plug it back into the Lax equation to check.) Because B is
Hermitian, eiBt is unitary, so we have:

A(t) = U †A(0)U

Unitary transformations do not change the eigenvalues of an matrix, so the eigenvalues of A(t)
are the same as the eigenvalues of A(0), thus the eigenvalues are conserved quantities. More
conveniently, we have the integrals of motion:

Ik = Tr(Ak)

For NxN matrices, it can be shown that Ik are independent up to k = N . To show that Ik are
compatable is very difficult and the proof depends on the nature of the original problem, but it
turns out to be true for the model we are studying. So as long as we accept independence and
compatibility, then if we can reduce a matrix equation of motion to a Lax pair, then we have an
integrable system.
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4 The Calogero Problem

The Calogero Model is a integrable system that was solved in the early 1970s. The fact that a
relatively simple classical system took so long to solve suggests that the problem of solving integrable
systems is non-trivial.

The Calogero Lagrangian is:

L =
1
2

∑
a

ϕ̇ 2
a −

∑
a<b

g2

(ϕa − ϕb)2

This is a one-dimensional N -body system where the particles interact pairwise via a 1/r2 potential.
The 1/r2 potential is a specific case of the more general Weierstrass potentials. The g value indicates
the strength of the interaction.

To solve the Calogero Langrangian in either classical or quantum mechanics is very difficult. At
first glance, there is no reason to expect that there would be integrals of motion at all. Our goal is
to show that from the point of view of matrix models, the Calogero Problem is easily shown to be
solvable even if it is not easily solvable.

5 The Matrix Model for the Calogero Problem

Consider the set of NxN Hermitian matrices. Because M † = M , the Lagrangian is:

L =
1
2
Tr(Ṁ2)

This Lagrangian is invariant under M 7→ U †M U where U is a unitary matrix. Unlike SU(N),
however, this Lagrangian is not invariant under left or right multiplication alone. The conserved
quantity related to the single symmetry of the Lagrangian is:

J = i[M,Ṁ ]

(This is in some sense the sum of the J and K conserved quantities from SU(N).)

We are going to see that this matrix model supplimented with the condition that J takes on a
certain value will give the Calogero Lagrangian. You may wonder why we are allowed to set J to
a certain value. We are free to consider the subset of the Hermitian matrices that satisfy the J
constraint because it is a closed set (i.e. under the equations of motion a matrix with a certain J
value will transform to another matrix with the same J value because J is constant in time).

The following bit of algebra will show the equivalence of the matrix Lagrangian and the Calogero
Lagrangian. Let M = V †D V , where V is unitary and D is diagonal.

Ṁ = V̇ †D V + V †Ḋ V + V †D V̇ = V †(Ḋ + i[W,D])V

where W = iV̇ V †. Note that W † = W so W is Hermitian. (The above equation makes sense even
if D is not diagonal. Remember this equation, because we will need it when finding the Lax pair.)
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The Lagrangian is now:

L =
1
2
Tr(Ḋ2 + iḊ[W,D] + i[W,D]Ḋ − [W,D]2)

The middle terms are traceless:

Tr(Ḋ[W,D] + [W,D]Ḋ) = Tr(ḊWD − ḊDW + WDḊ −DWḊ)
= Tr(DḊW −DḊW + DḊW −DḊW ) = 0

(We have used the fact that diagonal matrices commute. Also note that the trace of a commutator
is always zero because of the cyclic invariance of the trace.) If we let

D = diag[ϕ1, ϕ2, . . . , ϕN ]

then
Tr(Ḋ2) =

∑
a

ϕ̇ 2
a

To deal with the last term, let’s look at J more closely.

J = i[M,Ṁ ] = iV †[D, Ḋ + i[W,D] ]V = −V †[D, [W,D] ]V

(−V J V †)ab = ([D, [W,D] ])ab = (ϕa − ϕb)[W,D]ab

Putting this all together:

Tr([W,D]2) =
∑
a b

[W,D]ab[W,D]ba =
∑
a b

(−V JV †)ab(−V JV †)ba

(ϕa − ϕb)2
= 2

∑
a<b

(V JV †)ab(V JV †)ba

(ϕa − ϕb)2

(The last step follows because the result is symmetric under an exchange of a and b.)

Now our Lagrangian is of the form:

L =
1
2

∑
a

ϕ̇2
a −

∑
a<b

(V JV †)ab(V JV †)ba

(ϕa − ϕb)2

This is almost in the form we want, except we have a pole whenever a = b and there is also some
“angular” dependence. To get the Calogero model, we need:

(V JV †)ab(V JV †)ba = g2(1− δab)

We will see that this is indeed the case for:

Jab = g(1− δab)

(i.e. a matrix with zeros on the diagonal and g everywhere else).

To show this, we will need the property of unitary matrices that the rows and columns are or-
thonormal. That is: ∑

k

∑
l

VakV
†
lb = δab
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Let’s do the algebra. (We are summing over k, l, m and n.)

(V JV †)ab(V JV †)ba = g2(Vak(1− δkl)V
†
lb)(Vbm(1− δmn)V †

na)

= g2(VakV
†
lb − VakV

†
kb)(VbmV †

na − VbmV †
ma)

= g2(VakV
†
lb − δab)(VbmV †

na − δba)

= g2(VakV
†
lbVbmV †

na − VakV
†
lbδba − δabVbmV †

na + δabδba)

= g2(VakV
†
naVbmV †

lb − δabδba − δabδba + δab)
= g2(δaaδbb − δab)
= g2(1− δab)

So we have arrived at our final result, that the Calogero model is equivalent to a Hermitian matrix
Lagrangian:

L =
1
2
Tr(Ṁ2)

subject to the constraint:
J = g(1− δab)

6 The Lax Pair for the Calogero Matrix Model

All that remains is to show that the equation of motion for the Calogero Matrix Model reduces to
a Lax pair. Using the Lagrange equations of motion:

∂L

∂M
=

d

dt

∂L

∂Ṁ

Clearly ∂L
∂M = 0. To find ∂L

∂Ṁ
we have to be a bit more careful.

∂

∂Ṁij

(
1
2
Tr(Ṁ2)

)
=

∂

∂Ṁij

(
1
2
ṀabṀba

)
=

1
2
δaiδbjṀba +

1
2
Ṁabδbiδaj =

1
2
Ṁji +

1
2
Ṁji = Ṁji

Thus:
0 =

d

dt
(Ṁ) = M̈

(Note that there are no traces involved.) Let’s turn this equation of motion into a Lax pair.

M = V †D V

Ṁ = V †(Ḋ + i[W,D])V

Let A = Ḋ + i[W,D].
M̈ = V †(Ȧ + i[W,A])V = 0

Our equation of motion is now:
V †(Ȧ + i[W,A])V = 0

Ȧ + i[W,A] = 0

iȦ = [W,A]

We showed earlier that W † = W , thus A and W form the Lax pair we were looking for.
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